کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



آخرین مطالب


جستجو


 



   در این تحقیق, اتصال با هندسه متغیر از لحاظ خمش حول محور قوی تیر، مورد بررسی قرار گرفته است. نتایج نشان می دهد، این اتصال قادر است مفصل پلاستیک را از ناحیه اتصال دور نگه دارد و با این اتصال می توان از بخش بیشتری از بافت عضو در استهلاک انرژی بهره جست و به مقادیر بیشتری از ذخیره سازی و استهلاک انرژی در طول عضو رسید. در این تحقیق با توجه به نقاط ضعف اتصالات قبلی, با رویکردی جدید، راهکارهایی جهت اصلاح عملکرد آن ارائه شده است که این راه حلها، به صورت تئوری مورد بررسی قرار گرفته است. اصلاح هندسی اتصال، اگرچه سبب افزایش سختی و مقاومت کل سازه می شود، درعین حال، اضافه نمودن اجزای جدید به اتصال موجب کاهش ظرفیت شکل پذیری مدل­ها شده است. به منظور مقایسه و نتیجه گیری بهتر اتصالات رایج قبل از زلزله نورثریج و نیز اتصال جدید، با بهره گرفتن از روش اجزای محدود از نرم افزار Abaqus برای مدلسازی در قابهای(یک دهانه) 3 و 4 و 5 متری بهره گیری شده است.
واژه های كلیدی:
اتصالات خمشی، اتصال با هندسه متغیر، استهلاک انرژی
 
 

فهرست مطالب

عنوان                                            صفحه
فصل 1-  مقدمه و کلیات.. 1
1-1-        مقدمه.. 2
1-2-        قاب های مقاوم خمشی فولادی (SMRF).. 5
1-3-   اتصال با هندسه متغیر:.. 8
1-4-   تعریف موضوع تحقیق:.. 9
1-5-   اهمیت و اهداف مطالعه اتصال با هندسه متغیر:.. 9
1-6-   روش تحقیق:.. 10
1-7-   ساختار پایان نامه:.. 10
فصل 2-  اتصالات فولادی و سیستم اتصال گیردار با هندسه متغیر   12
2-1-        مقدمه.. 13
2-2-   تعریف اتصال.. 15
2-2-1- انواع اتصالات.. 15
2-3-   منحنی لنگر_ دوران(M- ) اتصالات.. 15
2-4-   طبقه بندی اتصالات خمشی:.. 18
2-4-1- طبقه بندی اتصالات خمشی بر اساس آیین نامه AISC2005. 20
2-4-2- معیار سختی اتصال.. 20
2-4-3- طبقه بندی قاب های خمشی در آیین نامه لرزه ای AISC2005. 22
2-4-4- تقسیم بندی اتصالات خمشی در آیین نامه FEMA 350:.. 22
بر اتصالات پیش از زلزله نورثریج.. 24
2-5-1- اتصالات مقاوم خمشی رایج قبل از زلزله نورثریج 1994.. 24
2-5-2- بررسی های عینی انجام شده بر روی اتصالات.. 25
2-5-3- نتیجه گیری.. 30
2-6-   راه حل.. 31
2-6-1- اتصالات تقویت شده:.. 32
2-6-2- اتصالات ضعیف شده.. 36
2-7-   بررسی اتصال تیر با جان شکافدار.. 37
2-7-1- هندسه کلی اتصالات تیر های با جان شکافدار.. 37
2-7-2- مزایای هندسه اتصال با جان شکافدار نسبت به اتصالات رایج.. 38
2-7-3-          نتایج کلی……………………………………. ………………………………………………………………………………………………………………………………. 42
2-8-   بررسی اثر اتصال RBS در بهبود رفتار قابهای خمشی فولادی[10].. 42
2-8-1- هندسه کلی اتصالات RBS. 43
2-8-2- مزایای هندسه اتصال RBS. 44
2-8-3-          اثر RBS در جلوگیری از ترد شكنی اتصال و كنترل تنشها در بر ستون[10]   46
2-8-4-          بهسازی و تقویت اتصالات خمشی ساختمان های موجود با بهره گرفتن از RBS. 47
2-8-5-          نتیجه گیری.. 49
2-9-   اتصال با ورق میانگذر:.. 50
2-9-1-          مزایای هندسه اتصال با ورق میانگذر:.. 51
2-9-2-          سایر مزیتهای اتصال با ورق میانگذر به ستونهای قوطی شکل.. 53
2-9-3-          بررسی نتایج تحلیل.. 54
2-9-4-          نتیجه گیری.. 55
2-10-         سیستم اتصال گیردار با صفحات کناری:.. 56
2-10-1-            مقدمه:…………………………………..                  56
2-10-2-            معرفی اتصال با صفحات کناری.. 57
2-10-3-            مقاوم سازی در برابر ضربه و انفجار با بهره گرفتن از اتصال با صفحات کناری   58
2-10-4-            هندسه های معمول سیستم اتصال با ورق کناری:.. 62
2-10-5-            سازه های اجرا شده:.. 63
2-10-6-            مقایسه اتصال با صفحات کناری و اتصال تیر کاهش یافته (RBS):   63
2-11-         اتصال CONXL :.. 64
2-11-1-            هندسه کلی و مزایای اتصالCONXL.. 65
2-11-2-            بررسی نتایج حاصل از تحلیل نمونه ها.. 67
2-11-3-       نتیجه گیری.. 69
فصل 3-   مدلسازی و بررسی های تئوری و تحلیلی.. 71
3-1-   طراحی اتصالات تیر به ستون به روش ممان اینرسی متغیر.. 72
3-1-1- مقدمه   72
3-2-   روش اجزاء محدود.. 76
3-3-   معیار های تسلیم.. 76
3-3-1- معیار تسلیم فون میسز و ترسکا.. 77
3-4-        توزیع تنش در تیر ها.. 78
3-4-1- توزیع کلاسیک تنش در تیر ها.. 78
3-4-2- الف: توزیع تنش خمشی در تیر ها.. 79
3-4-3- ب: توزیع تنش برشی در تیر ها:.. 79
3-4-4- توزیع تنش بر اساس مطالعات المان محدود.. 80
3-5-   توزیع انرژی در اعضاء سازه ای.. 82
3-6-   انتخاب نرم افزار.. 89
3-6-1- نحوه ایجاد یک مدل تحلیلی کامپیوتری:.. 90
3-6-2- رفتار مصالح.. 91
3-7-        انتخاب مدل ها و جزییات اتصال مدل شده:.. 92
3-7-1- ارائه معادله هندسه تیر طره تحت بار منفرد:.. 92
3-7-2- ارائه معادله هندسه تیر طره تحت بار گسترده:.. 94
3-7-3- ارائه معادله هندسه تیر دو سر گیردار تحت لنگر:.. 96
3-7-4- ارائه معادله هندسه تیر دو سر گیردار تحت اثر بار گسترده:.. 100
فصل 4-  خروجی ها و نتایج بدست آمده.. 105
4-1-        مقدمه:.. 106
4-2-   طرح و مشخصات اتصالات نمونه:.. 106
4-3-   نحوه اعمال بار و شرائط مرزی:.. 107

پایان نامه و مقاله

 

4-4-        انتخاب مدل ها:.. 107
4-4-1- تیرهای کنسول تحت بار منفرد در بخش انتهائی.. 107
4-4-2- تیرهای کنسول تحت بار گسترده یکنواخت.. 109
4-4-3- تیرهای دو سرگیردار تحت بار گسترده یکنواخت در طول و لنگر متمرکز یکطرفه   111
4-4-4- جزییات اتصال مدل شده :.. 118
فصل 5-  نتیجه‌گیری و ارائه راهکار.. 132
5-1-   نتیجه‌گیری.. 133
5-2-   پیشنهادات.. 133
 
فهرست شکل‌‌ها
عنوان                                            صفحه
شکل ‏1‑1: یک نمونه ساختمان با قاب خمشی[19].. 6
شکل ‏1‑2: مکان احتمالی تشکیل مفصل پلاستیک در تیر (تغییر شکلهای ماندگار)   8
شکل ‏1‑3: هندسه پایه اتصال با هندسه متغیر.. 8
شکل ‏2‑1: انواع منحنی های لنگر_دوران[3].. 17
شکل ‏2‑2: منحنی های لنگر_دوران برخی از اتصالات رایج[6]… 18
شکل ‏2‑3: نمودار لنگر_چرخش و شکل پذیری اتصالات [6]… 19
شکل ‏2‑4: نمودار لنگر_چرخش و شکل پذیری اتصالات [3]… 20
شکل ‏2‑5: نمودار لنگر_چرخش و شکل پذیری اتصالات [3]… 21
شکل ‏2‑6: اتصال خمشی رایج قبل از زلزله نورثریج[21]… 25
شکل ‏2‑7: شکست در جوش بال تیر به بال ستون در طی زلزله نورثریج[26].   27
شکل ‏2‑8: شکست بال ستون[26]… 27
شکل ‏2‑9: شکست بال ستون و جوش تیر به ستون[26]… 28
شکل ‏2‑10: تصاویری از چند نمونه خرابی در زلزله نورثریج شامل: گسترش شکست در ضخامت بال ستون _ گسترش شکست در جان تیر _ شکست کامل اتصال تیر به ستون[26]   28
شکل ‏2‑11: انواع اتصالات تقویت شده.. 33
شکل ‏2‑12: انواع اتصالات تقویت شده[27و28].. 34
شکل ‏2‑13: انواع اتصالات تقویت شده[27و28].. 35
شکل ‏2‑14: انواع اتصالات تیر به ستون RBS [31و32].. 36
شکل ‏2‑15: اتصال تیر به ستون با جان شکاف دار بصورت شماتیک[1].. 38
شکل ‏2‑16: اتصال تیر به ستون با جان شکاف دار بصورت شماتیک[30و 2]   40
شکل ‏2‑17: انواع اتصالات RBS[10].. 44
شکل ‏2‑19: مشخصات كلی نمونه ها[8و9]… 46
شکل ‏2‑20: طرح بهسازی پیشنهادی یوانگ و همكاران [32]… 48
شکل ‏2‑21: جزئیات نمونه های آزمایشی چن و تو[31]… 48
شکل ‏2‑22: رفتار هیسترزیس نمونه های آزمایش شده توسط چن و تو[31]… 49
شکل ‏2‑23: شمایی از اتصال با ورق میانگذ رو نحوه مونتاژ آن[11]… 51
شکل ‏2‑24: نحوه انتقال نیروها در اتصال با ورق میانگذر[11].. 52
شکل ‏2‑25: توزیع کرنشهای پلاستیک فون میسز در زیرسازه[11].. 54
شکل ‏2‑26: منحنی هیسترسیس لنگر_ دوران کل زیرسازه با اتصال میانگذر[11]   55
شکل ‏2‑27: منحنی هیسترسیس لنگر_ دوران پلاستیک زیرسازه با اتصال میانگذر[11]   55
شکل ‏2‑28: اتصال با ورق های کناری مجزا [33].. 57
شکل ‏2‑29: اتصال با ورق های کناری تمام عمق [28].. 57
شکل ‏2‑30: جزئیات اتصال با صفحات کناری[34].. 58
شکل ‏2‑30: تاثیر اتصال در کاهش فرو ریختگی پی در پی کف ها [34].. 59
شکل ‏2‑31: هندسه اتصال الف) اتصال ورق کناری ب) اتصال ورق کناری بهبود یافته [34].. 61
شکل ‏2‑32: هندسه های معمول سیستم اتصال ورق کناری[34].. 62
شکل ‏2‑34: نمای كلی اتصال ConXL[3].. 65
شکل ‏2‑35: تعریف هندسه و جزئیات اتصال ConXL.[13].. 66
شکل ‏2‑36: توزیع تنش فون میسز و تغییر شكل اتصال ConXL-R[13.].. 68
شکل ‏2‑37: توزیع تنش فون میسز و تغییر شكل اتصال ConXL-NR[13.].. 69
شکل ‏2‑38: نمودار لنگر-دوران هر دو نمونه اتصال ConXL[13.]… 70
شکل ‏2‑39: نمودارپوش لنگر-دوران هر دو نمونه اتصال ConXL[13.]… 70
شکل ‏3‑1: نمودار معیارهای تسلیم فون میسز و ترسکا [15]… 78
شکل ‏3‑2: معیارهای فون میسز و ترسکا [15]… 78
شکل ‏3‑3: پارامترهای موثر در تنش برشی نسبت به تار خنثی.. 80
شکل ‏3‑4: شمائی از تیر کنسول تحت بار منفرد.. 83
شکل ‏3‑5: در برخورد خودرو با مانع بخشهائی که طاقت سرعت بارگذاری را ندارند دچار خرابی موضعی می گردند [43].. 85
شکل ‏3‑6: مدلسازی تیر کنسول با فنر های سری دارای سختی ثابت.. 86
شکل ‏3‑7: نمودار نیرو _ جابجائی در محدوده خطی.. 86
شکل ‏3‑8: مقایسه نسبی ذخیره سازی انرژی در طول دو تیر با هندسه های ثابت و متغیر.. 87
شکل ‏3‑9: مدلسازی تیر کنسول با فنر های سری دارای سختی متغیر.. 88
شکل ‏3‑10: مکان احتمالی تشکیل مفصل پلاستیک در تیرها در مجاورت اتصال[27]   88
شکل ‏3‑11: منحنی تنش _ کرنش فولاد St37[14].. 92
شکل ‏3‑12: منحنی تنش _ کرنش جوش[14].. 92
شکل ‏3‑13: تیر کنسول تحت بار متمرکز با تنشهای یکسان در تار بالا و پائین   94
شکل ‏3‑14: تیر کنسول تحت بار گسترده یکنواخت با تنشهای یکسان در تار بالا و پائین.. 95
شکل ‏3‑15: قاب یک دهانه تحت لنگر متمرکز یکطرفه.. 96
شکل ‏3‑16: تفکیک شکل قاب یک دهانه تحت لنگر متمرکز یکطرفه به دو تیر با لنگرهای معین.. 97
شکل ‏3‑17: شکل تفکیک شده منحنی لنگر قاب یک دهانه تحت لنگر متمرکز یکطرفه   98
شکل ‏3‑18: نمودار منحنی لنگر تیر دوسر گیردار تحت لنگر یکطرفه.. 98
شکل ‏3‑19: نمودار معادله هندسی تیر دو سر گیردار صرفا تحت برش ناشی از لنگر متمرکز یکطرفه.. 99
شکل ‏3‑20: نمودار معادله هندسی تیر دو سر گیردار صرفا تحت برش ناشی از لنگر متمرکز یکطرفه.. 100
شکل ‏3‑21: تیر دو سر گیردار تحت بار گسترده.. 101
شکل ‏3‑22: نمودار معادله هندسی تیر دو سر گیردار تحت بار گسترده.. 102
شکل ‏3‑23: نمودار معادله لنگر تیر دو سر گیردار تحت لنگر متمرکز یکطرفه و بار گسترده.. 103
شکل ‏3‑24: قاب فولادی یک دهانه تحت بار گسترده قائم و لنگر متمرکز در انتهای تیر.. 103
شکل ‏3‑25: نمودار معادله هندسی تیر دو سر گیردار تحت لنگر متمرکز یکطرفه و بار گسترده معین.. 104
شکل ‏3‑26: نمودار معادله هندسی تیر دو سر گیردار صرفا تحت برش ناشی از لنگر متمرکز یکطرفه.. 104
شکل ‏4‑1: نمودار بار چرخه ای اعمال شده به نمونه ها.. 107
شکل ‏4‑2: نمایش کانتورهای تنش تیر با هندسه ثابت تحت بار منفرد در بخش انتهائی   108
شکل ‏4‑3: نمایش کانتورهای تنش تیر با هندسه متغیر تحت بار منفرد در بخش انتهائی   108
شکل ‏4‑4: نمودار نیرو _ جابجائی برای تیر طره تحت بار منفرد با هندسه ثابت   109
شکل ‏4‑5: نمودار نیرو _ جابجائی برای تیر طره تحت بار منفرد با هندسه متغیر   109
شکل ‏4‑6: نمایش کانتورهای تنش تیر با هندسه ثابت تحت بار گسترده.. 110
شکل ‏4‑7: نمایش کانتورهای تنش تیر با هندسه متغیر تحت بار گسترده.. 110
شکل ‏4‑8: نمودار نیرو _ جابجائی برای تیر طره تحت بار گسترده با هندسه ثابت   111
شکل ‏4‑9: نمودار نیرو _ جابجائی برای تیر طره تحت بار گسترده با هندسه متغیر   111
شکل ‏4‑10: نمایش کانتورهای تنش تیر دو سرگیردار با هندسه ثابت تحت بار گسترده یکنواخت و لنگر متمرکز یکطرفه.. 112
شکل ‏4‑11: نمایش کانتورهای تنش تیر دو سرگیردار با هندسه متغیر تحت بار گسترده یکنواخت و لنگر متمرکز یکطرفه.. 112
شکل ‏4‑12: نمایش چند حالت معادله هندسی تیر دوسر گیردار تحت بار گسترده ثابت و لنگر جانبی متغیر.. 113
شکل ‏4‑13: نمودار نیرو _ جابجائی برای تیر دو سرگیردار با هندسه ثابت تحت بار گسترده یکنواخت و لنگر متمرکز یکطرفه.. 114
شکل ‏4‑14: نمودار نیرو _ جابجائی برای تیر دو سرگیردار با هندسه متغیر تحت بار گسترده یکنواخت و لنگر متمرکز یکطرفه.. 114
شکل ‏4‑15: نمایش معادله هندسی تیر دوسر گیردار با مقطع متغیر(الف) – ثابت و متغیر(ب).. 117
شکل ‏4‑16: معادله منحنی سخت کننده اتصال حاصل از روابط تحلیلی برای تیر فوق   118
شکل ‏4‑17: شمائی از سخت کننده پیشنهادی برای اتصال.. 119
شکل ‏4‑18: شمائی از قاب یک دهانه مورد بررسی تحت بارگذاریهای مسأله   120
شکل ‏4‑19: نمایش کانتورهای تنش تیرIPE14 با سخت کننده تحت بارگذاری مساله برای دهانه 3 متری.. 121
شکل ‏4‑20: سخت کننده های الحاقی به تیرIPE14 تحت بارگذاری مساله برای دهانه 3 متری.. 121
شکل ‏4‑21: نمایش کانتورهای تنش تیرIPE20 بدون سخت کننده تحت بارگذاری مساله برای دهانه 3 متری.. 121
شکل ‏4‑22: نمودار نیرو _ جابجائی برای تیرIPE14 بدون سخت کننده تحت بارگذاری مساله برای دهانه 3 متری.. 122
شکل ‏4‑23: نمودار نیرو _ جابجائی برای تیرIPE14 با سخت کننده تحت بارگذاری مساله برای دهانه 3 متری.. 122
شکل ‏4‑24: نمودار نیرو _ جابجائی برای تیرIPE20 بدون سخت کننده تحت بارگذاری مساله برای دهانه 3 متری.. 123
شکل ‏4‑25: نمایش کانتورهای تنش تیرIPE14 با سخت کننده تحت بارگذاری مساله برای دهانه 4 متری.. 124
شکل ‏4‑26: سخت کننده های الحاقی به تیرIPE14 تحت بارگذاری مساله برای دهانه 4 متری.. 124
شکل ‏4‑27: نمایش کانتورهای تنش تیرIPE20 با سخت کننده تحت بارگذاری مساله برای دهانه 4 متری.. 124
شکل ‏4‑28: نمودار نیرو _ جابجائی برای تیرIPE14 بدون سخت کننده تحت بارگذاری مساله برای دهانه 4 متری.. 125
شکل ‏4‑29: نمودار نیرو _ جابجائی برای تیرIPE14 با سخت کننده تحت بارگذاری مساله برای دهانه 4 متری.. 125
شکل ‏4‑30: نمودار نیرو _ جابجائی برای تیرIPE20 بدون سخت کننده تحت بارگذاری مساله برای دهانه 4 متری.. 126
شکل ‏4‑31: نمایش کانتورهای تنش تیرIPE16 با سخت کننده تحت بارگذاری مساله برای دهانه 5 متری.. 127
شکل ‏4‑32: سخت کننده های الحاقی به تیرIPE16 تحت بارگذاری مساله برای دهانه 5 متری.. 127
شکل ‏4‑33: نمایش کانتورهای تنش تیرIPE20 با سخت کننده تحت بارگذاری مساله برای دهانه 5 متری.. 128
شکل ‏4‑34: نمودار نیرو _ جابجائی برای تیرIPE16 بدون سخت کننده تحت بارگذاری مساله برای دهانه 5 متری.. 128
شکل ‏4‑35: نمودار نیرو _ جابجائی برای تیرIPE16 با سخت کننده تحت بارگذاری مساله برای دهانه 5 متری.. 129
شکل ‏4‑36: نمودار نیرو _ جابجائی برای تیرIPE22 بدون سخت کننده تحت بارگذاری مساله برای دهانه 5 متری.. 129
شکل ‏4‑37: تصویر سخت کننده اتصال.. 131
 
 
فهرست جدول‌‌ها
عنوان                                            صفحه
جدول ‏2‑1: حداقل دریفت سیستم های خمشی بر اساس آیین نامه FEMA 350 [21].   23
جدول ‏4‑1: معادل سازی مقاطع متداول فولادیIPE با مقاطع مسطتیلی(ابعاد بر حسب cm)… 115
جدول ‏4‑2: جدول جزئیات بارگذاری و ابعاد سخت کننده برای دهانه 3 متری   120
جدول ‏4‑3: جدول جزئیات بارگذاری و ابعاد سخت کننده برای دهانه 4 متری   123
جدول ‏4‑4: جدول جزئیات بارگذاری و ابعاد سخت کننده برای دهانه5 متری   127
 

فصل 1-     مقدمه و کلیات

 
 

1-1-      مقدمه

زلـزله 17 ژانویه سال 1994 نورثـریج که در20 مایلی شمال غرب لس آنجلس اتفاق افتاد، اولین زلزله­ای بود که به تعداد زیادی از ساختمان های مقاوم خمشی در محل حادثه آسیب سازه­ای رساند. اگر چه شدت زلزله 8/6 در مقیاس ریشتر بود، که بر اساس مقدار انرژی رها شده، یک زلزله متوسط در نظر گرفته می­شد، تعداد زیادی از اتصالات تیر به ستون ساختمان های مقاوم خمشی، در آن زلزله به شدت آسیب دیدند. این اتصالات در آیین نامه Uniform Building Code) UBC) مورد تأیید قرار گرفته بودند و تصور می شد که ظرفیت کافی دارند تا تیر در خمش، به حد تسلیم برسد و یا ناحیه چشمه اتصال ستون دچار تسلیم برشی گردد. اما بر خلاف انتظار، اکثریت اتصالات، به دلایل مختلفی که ذکر خواهد شد، بصورت ترد گسیخته شدند و در موارد کمی، رفتار آنها شکل پذیر بود. یکسال بعد از زمین لرزه نورثریج، درست در 17 ژانویه 1995 زلزله ای به بزرگی 9/6 در مقیاس ریشتر، شهر کوبه در ژاپن را لرزاند که در این زلزله نیز بسیاری از اتصالات قاب­های خمشی آسیب دیدند و حتی بعضی از ساختمان­ها با قاب خمشی فرو ریختند. کشف آسیب­های جدی در ساختمان های فولادی، با قاب­های خمشی جوشی در زلزله­های دیگر نیز تأییدی بر آسیب­های اتفاق افتاده در قاب­های خمشی نورثریج بود و این نشان دهنده این مطلب بود که آسیب ها فقط به خصوصیات لرزه ای در زلزله نورثریج مربوط نمی شود و نقص، از خود اتصالات آسیب دیده می باشد.
زلزله نورثریج, به دلیل تحولاتی که در روند طراحی و ساخت اتصالات گیردار جوشی در سازه های فولادی ایجاد کرد, نقطه عطفی در تاریخ طراحی و اجرای این نوع سازه ها محسوب می شود. بدنبال زلزله نورثریج, تعدادی از ساختمان­های فولادی جوشی با سیستم قاب خمشی(WSMF), در ناحیه اتصالات تیر به ستون دچار شکست شدند. خرابی دور از انتظار بسیاری از ساختمان­های با سیستم‌ مقاومت جانبی قاب خمشی در این زلزله، نوع نگاه به اتصالات این قاب‌ها را دچار دگرگونی كرد. به همین دلیل مهندسان با مشاهده شكست های غیر منتظره گسترده در جوش‌ها و فلز پایه در اتصالات متعارف قاب‌های مقاوم خمشی، بر آن شدند تا اتصالاتی با شكل‌پذیری بیشتر و جزئیات اصلاح شده، معرفی كنند. یكی از بخش‌های مهم اتصالات تیر به ستون در قابهای خمشی، ناحیه چشمه اتصال می‌باشد كه سختی و مقاومت آن در رفتار و شكل‌پذیری قاب تاثیر بسزایی دارد. بخصوص رفتار چشمه اتصال در قاب‌های خمشی ویژه، كه شكل‌پذیری بالایی از این نوع قاب انتظار می‌رود، نقش بسیار مهمی را ایفا می‌كند. این موضوع، ضرورت بررسی شكل ‌پذیری، رفتار و عملكرد لرزه‌ای قاب‌های خمشی فولادی، با منظور نمودن اثر چشمه اتصال در آن‌ ها، توسط روش نوین طراحی بر مبنای عملكرد (كه بر پایه تحلیل‌های غیرخطی استوار است) را مشخص می‌كند[[i]].
در طراحی ساختمانها در مناطق لرزه خیز باید به گونه ای عمل کرد که:
الف) ایجاد سختی و مقاومت کافی در سازه جهت کنترل تغییر مکان جانبی تا از تخریب اعضاء سازه ای و غیر سازه ای تحت زلزله متوسط یا کوچک جلوگیری بعمل آید.
ب) ایجاد شکل پذیری و قدرت جذب انرژی مناسب در سازه به خاطر ممانعت از فروریختگی سازه در یک زلزله شدید.
منظور از شکل پذیری، قابلیت استهلاک انرژی توسط رفتار غیرالاستیک کل سازه، یا اعضای آن، تحت اثر تغییرشکل های رفت و برگشتی، بدون کاهش قابل ملاحظه ای در مقاومت آنها می باشد. شکل پذیر بودن یک خاصیت اساسی برای سازه های مقاوم در برابر زلزله می باشد. شکل پذیری مناسب در ناحیه غیر ارتجاعی اعضاء قاب، نیروهای وارده از زلزله را به نحو موثری مستهلک کرده و اعضاء می توانند قبل از فرو ریختن، تغییر شکل ارتجاعی یا خمیری قابل ملاحظه­ای را تحمل کنند. با توجه به اینکه رفتار ساختمان در مقابل زلزله همواره به صورت ارتجاعی باقی نمی ماند، در بعضی از اجزاء ساختمان تغییر شکل های خمیری بوجود می آید که خود باعث جذب انرژی زلزله می گردد. از آنجائیکه عمده این اتلاف انرژی، در مفاصل پلاستیک رخ داده و در عناصر سازه ای (تیر و ستون و …) با هندسه ثابت، مفاصل پلاستیک، در نقاط خاصی از سازه اتفاق می افتد، لذا درصورتی که بتوان، با تمهیداتی استهلاک انرژی را به نقاط بیشتر یا به طولهائی بیشتر از اعضاء سازه سوق داد، در اینصورت می توان گفت، از ظرفیت بیشتری از عضو در این امر بهره برداری شده است. ضمناً با مشارکت بیشتر بافت عضو سازه ای، در بحث استهلاک انرژی(تحت اثر نیروهای وارده)، می­توان در شرائط برابر(مصالح مصرفی) منحنی­های هیسترزیس با سطح زیر منحنی بیشتری را نسبت به اعضاء سازه ای با هندسه ثابت ایجاد نمود.
مبنای کار در طراحی اتصالاتی که با ایده بهبود عملکرد در رفتار اتصالات طرح می شوند این است که: اولاً ظرفیت باربری براساس ممان پلاستیک تیر مشخص شوند، ثانیاً اتصال باید آنقدر مقاوم باشد تا بتواند بدون تحمل شکست به حداکثر مقاومت خود برسد. ثالثاً ظرفیت شکل پذیری نیز باید به اندازه کافی تأمین شود، تا نقاطی از سازه که تحت تغییر شکل های پلاستیک بزرگ قرار می گیرند، قادر به اتلاف انرژی باشند.
فلسفه طراحی اتصالات نیز به گونه ای در نظر گرفته می شود که مفصل پلاستیک را از بر ستون دور کرده و به داخل تیر منتقل کند تا پایداری جانبی سازه در صورت تسلیم مقاطع، حفظ شود. بدین ترتیب اتصال در بر ستون به صورت الاستیک رفتار می نماید و مفصل پلاستیک در تیر و در ناحیه ای دور از اتصال اتفاق می افتد و اتصال را از ترد شکنی مصون نگه می دارد.
تمام اتصالات که باعث تشکیل مفصل پلاستیک در ناحیه ای دور از چشمه اتصال می شود را می توان به دو دسته تقسیم کرد:

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-02] [ 07:40:00 ب.ظ ]




 
 
 
 
 
 
فهرست مطالب
 
عنوان                                                       صفحه
فصل اول: کلیات
1-1- مقدمه …………………………………….. 2
1-2- عوامل چسبنده ………………………………. 2
1-2-1- اپوکسی …………………………………. 2
1-2-1-1- انواع اپوکسی ………………………… 3
1-2-1-2- درجه ……………………………….. 4
1-2-1-3- کلاس‌های اپوکسی ……………………….. 4
1-2-2- لاتکس …………………………………… 5
1-2-2-1- انواع لاتکس ………………………….. 6
1-3- تعمیر سازه های بتنی ………………………… 6
1-3-1- انواع تعمیر بتنی ……………………….. 6
1-3-1-1- تعمیر ترک …………………………… 6
1-3-1-2- تعمیرات اساسی بتن ……………………. 7
1-3-2- اهمیت اتصال در تعمیر بتن…………………. 8
1-3-3- توصیف مقاومت اتصال ……………………… 8
1-3-4- فاکتورهای مهم تاثیر گذار در اتصال ………… 8
1-3-5- فاکتورهای ثانویه تاثیر گذار در اتصال …….. 13
1-3-6- فاکتورهای دیگری که در مقاومت اتصال موثرند … 12
1-4- شیوه‌های آزمایش برای ارزیابی مقاومت اتصال …….. 11
1-4-1- آزمایش برش مایل ………………………… 14
1-4-2- مشکلات شیوه‌ی برش مایل ……………………. 14
1-5- اهداف پژوهش ……………………………….. 17
1-6- ساختار پایان‌نامه …………………………… 18
 
فصل دوم: بر پژوهش های پیشین
2-1- تحقیقات گذشته ……………………………… 20
2-2- آزمایشات و نتایج آنها ………………………. 22
2-2-1- آزمایش انجام شده توسط silva، brano و Julio و نتایج بدست آمده 22
2-2-2- تاثیر زبری سطح بتن در اتصال ملات اصلاح شده‌ی پلیمری, bachrian lubis ……………………………………………….. 25
2-2-3- آیشا، رامسوندار و هارون ………………… 27
2-2-4- آزمایش به فر نیا، جان نثاری و مشرف ………. 28
 
فصل سوم: مصالح مصرفی، نحوه‌ی آماده‌سازی و روش انجام آزمایش
3-1- مقدمه …………………………………….. 30
3-2- مصالح مصرفی ……………………………….. 30
3-3- آزمایش‌های انجام شده ………………………… 29
3-3-1- آزمایش طرح اختلاط بتن ……………………. 29
3-3-1-1- مدول نرمی ماسه ………………………. 31
3-3-1-2- آزمایش چگالی انبوهی شن ………………. 32
3-3-2- آزمایش برش مایل ………………………… 33
3-3-2-1- نکات انجام آزمایش برش مایل در ASTM ……. 33
3-3-2-1-1- لاتکس …………………………….. 35
3-3-2-1-2- اپوکسی …………………………… 37
3-3-2-2- نکات کارگاهی ACI …………………….. 39
3-3-2-2-1- ACI 5031-92 …………………………. 39
3-3-2-2-2- ACI 5032-92 …………………………. 41
3-3-2-2-3- ACI 5032R-92 ………………………… 42
3-3-2-2-3-1- شرایط اعمال چسب ………………… 42
3-3-2-2-3-2- ضوابط انتخاب چسب ……………….. 43
3-3-2-3- چگونگی انجام آزمایش ………………….. 43
3-3-2-3-1- تعداد نمونه‌های مورد نیاز ………….. 43
3-3-2-3-2- مراحل ساخت مقطع دست‌ساز ……………. 45
3-3-2-3-3- مراحل ساخت نمونه‌های آزمایش ………… 47
3-3-2-3-4- روش آماده سازی سطح ………………… 50
3-3-2-3-4-1- سوراخ شده با مته ……………….. 50
3-3-2-3-4-2- خش دار با برس فلزی ……………… 51
3-3-2-3-4-3-صاف ……………………………. 52
3-3-2-3-4-4- سند پلاست ………………………. 53
3-3-2-3-5- ساخت قالب تست برش مایل ……………. 53
3-3-2-3-6- اعمال چسب ………………………… 54
3-3-2-3-7- عمل‌آوری ………………………….. 57
3-3-2-3-8- دستگاه مقاومت فشاری ………………. 60
 
 
فصل چهارم: نتایج آزمایش‌ها و بحث در مورد آنها
4-1- مقدمه …………………………………….. 63
4-2- روش محاسبه‌ی مقاومت برشی از نتایج آزمایش ……… 64
4-3- شروع آزمایش ……………………………….. 64
4-3-1- تنظیمات دستگاه مقاومت فشاری ……………… 64
4-3-1-1- سرعت اعمال بار ………………………. 64
4-3-1-2- تنظیم نوع قالب ………………………. 64
4-3-2- مقاومت فشاری 28 روزه‌ی نمونه‌های بتنی برای بتن های سخت شده (بتن قدیم ) ………………………………………… 64
4-3-2-1- مقاومت فشاری 28 روزه برای طرح اختلاط 20 MPa . 64

مقالات و پایان نامه ارشد

 

4-3-2-2- مقاومت فشاری 28 روزه برای طرح اختلاط 30 MPa 65
4-3-2-3- مقاومت فشاری 28 روزه برای طرح اختلاط 40 MPa 65
4-4- نتایج …………………………………….. 65
4-4-1- نتایج آزمایش چسب‌های لاتکس, اپوکسی نوع 4 و اپوکسی نوع 5 شرکت طراحان بتن پایدار ………………………………. 65
4-4-1-1- Epoxy EA-222 عامل اتصال بتن سخت شده به بتن سخت شده 66
4-4-1-2- اپوکسی نوع 5 عامل اتصال بتن تازه به بتن سخت شده 68
4-4-1-3- لاتکس ……………………………….. 68
4-4-2- نتایج آزمایش‌های چسب‌های لاتکس, اپوکسی نوع 4 و اپوکسی نوع 5 نامیکاران ……………………………………… 72
4-4-2-1- Epoxy GE-2 عامل اتصال بتن سخت شده به بتن سخت شده   72
4-4-2-2- Epoxy Dur 32 عامل اتصال بتن تازه به بتن سخت شده     75
4-4-2-3- لاتکس ……………………………….. 78
4-4-3- نتایج آزمایش‌های چسب‌های لاتکس, اپوکسی نوع 4 و اپوکسی نوع 5 شرکت آبادگران ………………………………………. 81
4-4-3-1- EM Epoxy Bond عامل اتصال بتن سخت شده به بتن سخت شده     81
4-4-3-2- Epoxy ABADUR P1 عامل اتصال بتن تازه به بتن سخت شده 85
4-4-3-3- Latex، EM Bond ………………………….. 88
4-4-4- نتایج آزمایش‌های چسب لاتکس شرکت بتن شیمی خاتم . 91
4-4-4-1- لاتکس ……………………………….. 91
4-4-5- نتایج آزمایش بتن تازه به بتن سخت شده بدون استفاده از عوامل چسبنده ………………………………………… 95
4-5- نمودارها ………………………………….. 98
4-5-1- نتایج آزمایشات بدون چسب با مقاومت‌های مختلف بتن      98
4-5-2- نتایج آزمایشات نمونه‌های متصل شده با لاتکس …. 99
4-5-3- نتایج آزمایشات نمونه‌های متصل شده با اپوکسی نوع 4    100
4-5-4- نتایج آزمایشات نمونه‌های متصل شده با اپوکسی نوع 5    101
4-5-5- بررسی تاثیر افزایش مقاومت بتن در مقاومت اتصال 102
4-6- نحوه‌ی شکست ……………………………….. 103
 
فصل پنجم: نتیجه گیری و ارائه پیشنهادات برای پژوهش های آینده
5-1- مقدمه …………………………………….. 110
5-2- نتایج مطالعات آزمایشگاهی …………………… 110
5-3- ارائه پیشنهادات برای پژوهش های آینده ……….. 112
منابع …………………………………………. 113
 
 
فهرست اشکال
 
عنوان                                                       صفحه
شکل 1-1- سرنگ اپوکسی ……………………………. 2
شکل 1-2- رزین لاتکس ……………………………… 5
شکل 1-3- لاتکس تازه از برش………………………… 5
شکل 1-4- شیوه های مختلف آزمایش مقاومت اتصال ………. 13
شکل 1-5- پیکر بندی Slant Shear (Austin) ………………….. 14
شکل 1-6- تغییر مود برش از صفحه‌ی اتصال به صفحات بالاتر . 15
شکل 1-7- دایره‌ی مور آزمایش Slant Shear (Austin) …………… 16
شکل 1-8- ارتباط زاویه‌ی صفحه‌ی اتصال و زبری در تنش شکست (Austin et al 1999) ……………………………………………….. 17
شکل 3-1- چسب‌های تهیه شده ………………………… 30
شکل 3-2- ابعاد مقطع برش مایل …………………….. 34
شکل 3-3- مقطع دست ساز …………………………… 35
شکل 3-4- استفاده از دستگاه تراز کننده برای صاف کردن سطح قالب     45
شکل 3-5- استفاده از دستگاه برای تراز انتهای قالب ….. 45
شکل 3-6- شکل نهایی قالب …………………………. 46
شکل 3-7- نمونه‌ی Slant shear ………………………….. 46
شکل 3-8- لوله‌ی پلیکا پر شده از بتن ………………. 47
شکل 3-9- قالب سیلندری برای مقاومت فشاری ………….. 48
شکل 3-10- جدایی لوله از بتن به کمک اره …………… 49
شکل 3-11- استفاده از دستگاه سنگ بر برای برش مقطعی بتن 49
شکل 3-12- نمونه‌ی بریده شده ………………………. 50
شکل 3-13- سوراخ شده با مته ………………………. 51
شکل 3-14- خش دار با برس فلزی …………………….. 51
شکل 3-15- صاف ………………………………….. 52
شکل 3-16- سند پلاست ……………………………… 53
شکل 3-17- قالب Slant Shear ………………………….. 53
شکل 3-18- مخلوط چسب بتن، آب و سیمان …………….. 54
شکل 3-19- اعمال چسب …………………………….. 55
شکل 3-20- مخلوط کردن گروت اپوکسی ………………… 55
شکل 3-21-کوبیدن بتن …………………………….. 56
شکل 3-22- آماده برای عمل‌آوری …………………….. 56
شکل 3-23- نمونه‌های اپوکسی نوع 4 آماده برای عمل‌آوری … 57
شکل 3-24- باز کردن قالب نمونه برای عمل‌آوری ……….. 58
شکل 3-25- نمونه‌ی آماده‌ی تست اپوکسی نوع 4 …………. 59
شکل 3-26- نمونه‌های آماده‌ی تست چسب بتن و اپوکسی ……. 59
شکل 3-27- اندازه گیری قطر نمونه …………………. 60
شکل 3-28- دستگاه مقاومت فشاری ……………………. 61
شکل 3-29- قرار گیری نمونه در دستگاه و تست ………… 61
شکل 4-1- نمایش نیروی برش ………………………… 63
شکل 4-2- محاسبه‌ی قطر هر نمونه ……………………. 64
شکل 4-3- Epoxy EA-222 طراحان بتن ……………………. 65
شکل 4-4- Latex BA 310 طراحان بتن …………………….. 69
شکل 4-5- Epoxy GE 2 نامیکاران ………………………. 72
شکل 4-6- Epoxy Dur – 32 نامیکاران …………………….. 75
شکل 4-7- لاتکس نامیکاران …………………………. 78
شکل 4-8- EMEpoxy Bond آبادگران …………………….. 82
شکل 4-9- Epoxy ABADUR P1 آبادگران …………………… 85
شکل 4-10- EMBOND آبادگران ……………………….. 88
شکل 4-11- چسب بتن از شرکت بتن شیمی خاتم ………….. 92
شکل 4-12- اتصال بدون چسب و شکست در سطح روش آماده سازی سطح، نرمال ………………………………………………. 103
شکل 4-13- اتصال بدون چسب و شکست در سطح روش آماده سازی سطح، سند بلاست ………………………………………………. 104
شکل 4-14- اتصال با لاتکس و شکست در سطح، روش آماده سازی سطح، صاف ………………………………………………. 104
شکل 4-15- اتصال با اپوکسی و شکست در سطح، روش آماده سازی سطح، سند بلاست ………………………………………….. 105
شکل 4-16- اتصال با اپوکسی نوع 5، شکت در بتن، روش آماده سازی سطح، سند بلاست ………………………………………. 107
شکل 4-17- اتصال با اپوکسی نوع4، شکت در بتن، روش آماده سازی سطح، سوراخ شده با مته ………………………………. 107
شکل 4-18- اتصال با اپوکسی نوع4، شکت در بتن، روش آماده سازی سطح، خراش با برس فلزی ………………………………. 108
 
 
 
فهرست جدول‌‌ها
 
عنوان                                                          صفحه
جدول 1-1- روش‌های حذف بتن (Couvard 2006, Silfwerbereand, 1990) …… 10
جدول 2-1- طرح اختلاط بتن آزمایش سیلوا و همکارانش …… 23
جدول 2-2- نتایج آزمایشات D Silva (etal 2005) و همكارانش …… 24
جدول 2-3- نتایج آزمایشات bachrian lubis و همكارانش ……… 26
جدول 2-4- نتایج آزمایش آیشا و همكارانش …………… 27
جدول 2-5- نتایج آزمایشات به فر نیا,جان نثاری و مشرف .. 28
جدول 3-1- نتایج آزمایش مدول نرمی ماسه ……………. 32
جدول 3-2- طرح اختلاط برای بتن‌های استفاده شده ………. 33
جدول 3-3- محاسبه‌ی تعداد نمونه‌های مورد نیاز ……….. 44
جدول 4-1- نتایج آزمایش برش مایل خش دار شده با برس فلزی Epoxy EA-222 طراحان بتن پایدار …………………………………….. 66
جدول 4-2- نتایج آزمایش برش مایل سوراخ شده با مته Epoxy EA-222 طراحان بتن پایدار ………………………………………… 67
جدول 4-3- نتایج آزمایش برش مایل سند پلاست Epoxy EA-222 طراحان بتن پایدار ……………………………………………….. 67
جدول 4-4- نتایج آزمایش برش مایل صاف Epoxy EA-222 طراحان بتن پایدار 68
جدول 4-5- نتایج آزمایش برش مایل خش دار شده با برس فلزی Latex BA-310 طراحان بتن پایدار ………………………………. 70
جدول 4-6- نتایج آزمایش برش مایل سوراخ شده با مته Latex BA-310 طراحان بتن پایدار ………………………………………… 70
جدول 4-7- نتایج آزمایش برش مایل سند پلاست Latex BA-310 طراحان بتن پایدار ……………………………………………….. 71
جدول 4-8- نتایج آزمایش برش مایل صاف Latex BA-310 طراحان بتن پایدار 71
جدول 4-9- نتایج آزمایش برش مایل خش دار با برس فلزیEpoxy GE-2 نامیکاران ……………………………………………….. 73
جدول 4-10- نتایج آزمایش برش مایل سوراخ شده با متهEpoxy GE-2 نامیکاران ……………………………………………….. 73
جدول 4-11- نتایج آزمایش برش مایل سند پلاستEpoxy GE-2 نامیکاران 74
جدول 4-12- نتایج آزمایش برش مایل صافEpoxy GE-2 نامیکاران 74
جدول 4-13- نتایج آزمایش برش مایل خش دار با برس فلزی Epoxy Dur-32 نامیکاران ……………………………………… 76
جدول 4-14- نتایج آزمایش برش مایل سوراخ شده با مته Epoxy Dur-32 نامیکاران ……………………………………………….. 76
جدول 4-15- نتایج آزمایش برش مایل سند پلاست Epoxy Dur-32 نامیکاران    77
جدول 4-16- نتایج آزمایش برش مایل صاف Epoxy Dur-32 نامیکاران    77
جدول 4-17- نتایج آزمایش برش مایل خش دار با برس فلزی Latex نامیکاران ……………………………………………….. 79
جدول 4-18- نتایج آزمایش برش مایل سوراخ شده با مته Latex نامیکاران ……………………………………………….. 80
جدول 4-19- نتایج آزمایش برش مایل سند پلاست Latex نامیکاران    80
جدول 4-20- نتایج آزمایش برش مایل صاف Latex نامیکاران .. 81
جدول 4-21- نتایج آزمایش برش مایل خش دار با برس فلزی EM Epoxy Bond آبادگران ………………………………………. 83
جدول 4-22- نتایج آزمایش برش مایل سوراخ شده با مته EM Epoxy Bond آبادگران ……………………………………………….. 83
جدول 4-23- نتایج آزمایش برش مایل سند پلاست EM Epoxy Bond آبادگران   84
جدول 4-24- نتایج آزمایش برش مایل صاف EM Epoxy Bond آبادگران   84
جدول 4-25- نتایج آزمایش برش مایل خش دار با برس فلزی Epoxy ABADUR-P1 آبادگران ………………………………………. 86
جدول 4-26- نتایج آزمایش برش مایل سوراخ شده با مته Epoxy ABADUR-P1 آبادگران ………………………………………. 86
جدول 4-27- نتایج آزمایش برش مایل سند پلاست Epoxy ABADUR-P1 آبادگران ……………………………………………….. 87
جدول 4-28- نتایج آزمایش برش مایل صاف Epoxy ABADUR-P1 آبادگران 87
جدول 4-29- نتایج آزمایش برش مایل خش دار با برس فلزی EM Bond آبادگران ……………………………………………….. 89
جدول 4-30- نتایج آزمایش برش مایل خش دار با برس فلزی EM Bond آبادگران ……………………………………………….. 90
جدول 4-31- نتایج آزمایش برش مایل سند پلاست EM Bond آبادگران   90
جدول 4-32- نتایج آزمایش برش مایل صاف EM Bond آبادگران . 91
جدول 4-33- نتایج آزمایش برش مایل خش دار با برس فلزی چسب بتن، بتن شیمی خاتم …………………………………………… 93
جدول 4-34- نتایج آزمایش برش مایل سوراخ شده با مته چسب بتن، بتن شیمی خاتم …………………………………………… 93
جدول 4-35- نتایج آزمایش برش مایل سند پلاست چسب بتن، بتن شیمی خاتم 94
جدول 4-36- نتایج آزمایش برش مایل صاف چسب بتن، بتن شیمی خاتم 94
جدول 4-37- نتایج آزمایش برش مایل خش دار با برس فلزی بدون چسب     95
جدول 4-38- نتایج آزمایش برش مایل سوراخ شده با مته بدون چسب   96
جدول 4-39- نتایج آزمایش برش مایل سند پلاست بدون چسب …. 96
جدول 4-40- نتایج آزمایش برش مایل صاف بدون چسب …….. 97
 
 
 
 
 
 
 
فهرست نمودارها
 
عنوان                                                          صفحه
نمودار 4-1- اتصال بدون چسب انجام شده است …………. 98
نمودار 4-2- اتصال توسط لاتکس ……………………… 99
نمودار 4-3- اتصال با اپوکسی نوع 4 ……………….. 100
نمودار 4-4-اتصال با اپوکسی نوع 5 ………………… 101
نمودار 4-5- جهت بررسی تاثیر افزایش مقاومت بتن در آزمایش     102
 
 
 


 
 
 
 
 
 
فصل اول:
 
کلیات

 

 
1-1- مقدمه
اضافه کردن بتن تازه به روی لایه‌ی بتن قدیمی یک روش معمولی برای تعمیر یا تقویت سازه است. تعمیر بتن شامل حذف بتن ضعیف و جایگزینی آن با بتن جدید است، و یکی از اساسی ترین فاکتورهای این عمل وجود مقاومت اتصال خوب بین بتن اضافه شده و سطح قدیمی در طول عمر مفید سازه است. وقتی عمل تعمیر انجام می شود فاکتور های زیادی از جمله زبری سطح ،وجود ترک های ریز، تراکم بتن و عمل‌آوری آن و همچنین تفاوت در مشخصات مصالح از جمله مدول الاستیسیته، حرکات گرمایی و خزش در مقاومت و توزیع تنش موثرند. این سیستم را می‌توان شامل سه فاز سطح اولیه بتن،بتن اضافه شده ومحیط اتصال در نظر گرفت. منظور از محیط اتصال صفحه‌ی اتصال و اطراف آن است. این محیط باید توانایی مقابله در برابر تنش های وارده را داشته باشد . این محیط معمولا با اضافه کردن یک عامل چسبنده یا افزایش زبری و گاهی هر دوی ان ها خواهند بود. هر چند این روش ها تجربی اند و کارایی عامل چسبنده هنوز اثبات نشده است. از نتیجه‌ی این مطالعه طراحان می‌توانند مقاومت بتن مورد استفاده برای اتصال ،نوع زبری ایجاد شده و مقاومت طراحی را برای یک طراحی اقتصادی انتخاب کنند.
 
1-2- عوامل چسبنده:
1-2-1- اپوكسی1
 
 
[1]

شکل1-1- سرنگ اپوکسی

                                               
یکی از عوامل چسبنده‌ی مورد نظر در این پایان نامه اپوکسی است. رزین‌های اپوکسی با ایجاد حرارت داخلی عمل‌آوری می‌شوند. این سیستم‌ها شامل دو بخش رزین و سخت‌کننده هستند که پس از اختلاط با یکدیگر فعال شده و سخت می‌شوند.
رزین‌های اپوکسی در سطوحی مانند استایروفوم، چوب قرمز، چوب‌های سخت، بعضی سطوح پلاستیکی و سطوح فلزی و بتنی می‌توانند استفاده شوند. رزین‌های اپوکسی مقاومت خمشی، برشی و کششی مناسبی دارند، از جذب آب بسیار پایین و سختی بسیار زیادی برخوردارند و زمان گیرش بین 5 تا 7 روز دارند.
رزین‌های اپوکسی، پریپلیمرهای با وزن مولکولی کم یا پلیمرهایی با وزن مولکولی بالا هستند که معمولاً حداقل دارای 2 بخش مجزا (شکل1-1) که باید ابیدا ترکیب و سپس استفاده شوند، هستند. این دو بخش معمولاً از گروه گلیسیدیل[2] یا اکسایرن[3] هستند. بخش وسیعی از اپوکسی‌ها در صنایع تولید می‌شوند و مواد خام آن‌ ها از مشتقات نفت بدست می‌آید. مانند دیگر مواد پلیمری که با حرارت عمل‌آوری می‌شوند, ترکیب درجه[4] های مختلف رزین‌های اپوکسی یا اضافه کردن افزودنی، مواد پلاستیکی یا فیلرها برای رسیدن به پروسه یا نتیجه‌ی نهایی مطلوب و یا برای کاهش هزینه‌ی تولید یک امر معمولی است. به این عملیات دست‌کاری در فرمول نیز می‌گویند که به طور رایج در کارخانجات تولید اپوکسی در ایران انجام می‌شود.
1-2-1-1- انواع اپوکسی ]12[
نوع 1) برای موارد غیر باربر برای اتصال بتن سخت شده به بتن سخت شده یا مصالح دیگر
نوع 2) برای موارد غیر باربر برای اتصال بتن تازه به بتن سخت شده
نوع 3) برای اتصال مصالح ضدلغزش به بتن سخت شده و به عنوان اتصال‌دهنده در بتن اپوکسی[5] که در                    سطوح تحت بار ترافیکی (گرما یا حرکات مکانیکی) مورد استفاده قرار می‌گیرند.
نوع 4) برای موارد باربر برای اتصال بتن سخت شده به بتن سخت شده یا مصالح دیگر
نوع 5) برای موارد باربر برای اتصال بتن تازه به بتن سخت شده
نوع 6) برای اتصال و پوشش مقاطع پیش‌ساخته یا پیش‌تنیده و برای اتصال قطعه قطعه وقتی پیش کشیدگی موقتی انجام می‌گیرد.
نوع 7) برای پوشش غیرباربر قطعات المان پیش ساخته وقتی پس‌کشیدگی موقتی در اتصال قطعه به قطعه اعمال نشده است.
 
1-2-1-2- درجه
سه گرید متفاوت با توجه به مشخصات جاری شدن اپوکسی ها داریم:
ویسکوزیته کم (1 درجه
ویسکوز متوسط (2 درجه
غیر قابل جاری شدن [7] (3 درجه
1-2-1-3- کلاس های اپوکسی
کلاس‌های اپوکسی مشخص‌کننده‌ی دمای مناسب برای عمل گیرش چسب هستند.
کلاس A) برای استفاده در دمای زیر 4 درجه (کمترین دمای ممکن برای عملکرد اپوکسی)*
A: T < 4
کلاس B) برای استفاده بین دمای 4 تا 15 درجه                                   B: 4 < T < 15
کلاس C) برای استفاده در دمای بیش از 15 درجه                                        C: T > 15
کلاس D) برای دمای بین 4 تا 18 درجه                                            D: 4 < T < 18
کلاس E) برای دمای بین 15 تا 30 درجه                                         E: 15 < T < 30
کلاس F) برای دمای بین 25 تا 30 درجه                                           F: 25 < T < 30
*دمای اشاره شده مربوط به دمای سطح بتنی مورد نظر است نه دمای محیط. برای مثال چسب کلاس A در دمای اتاق به خوبی گیرش می‌کند.
1-2-2- لاتکس
لاتکس هم می‌تواند طبیعی و هم مصنوعی باشد. لاتکس طبیعی یک سیال شیری است (شکل 1-2 و 2-2) که در 10٪ همه‌ی گیاهان گل‌دار وجود دارد مرکبی از امولسیون پروتئین، شبه قلیا، نشاسته، شکر، روغن، رزین، جوهر مازد و صمغ که در معرض هوا سفت می‌شود و معمولاً با تخریب پوسته‌ی گیاه ترشح می‌کند. لاتکس مصنوعی با پلیمریزه کردن یک مونومر مانند استایرن که با مواد فعال در سطح[9] امولسیونه شده باشد, به وجود می آید.

شکل 1-2- رزین لاتکس.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

شکل1-3-لاتکس تازه از برش

1-2-2-1- انواع لاتکس ]15[
نوع 1 ) متفرق شدنی[10]- محدود برای استفاده‌ی داخلی و غیرقابل استفاده در شرایط مرطوب
نوع 2 ) متفرق نشدنی[11]- قابل استفاده در شرایط مرطوب
 
1-2-2-2- ضوابط انتخاب چسب
1) شرایط هنگام اعمال چسب
آلودگی سطح – دمای سطح تماس – رطوبت سطح – دسترسی به سطح
2) نوع و بزرگی بار
جهت (فشار، کشش برش، تغییر عکس)، مدت زمان، نرخ (استاتیک، دینامیک) – فرکانس بار
1 Epoxy

موضوعات: بدون موضوع  لینک ثابت
 [ 07:40:00 ب.ظ ]




. 28
فصل2: مبانی تحلیل خطر زلزله. 29
2-1- مقدمه. 29
-2-2 زلزله. 30
2-3- هدف گزارش. 30
2-4- محاسبه قدرت زمین لرزه. 30
-5-2 تفاوت Earthquake Risk و Earthquake Hazard. 31
2-6- مدل های چشمه های لرزه ای. 32
-7-2 گسل ها. 33
-8-2 تحلیل خطر زمین لرزه( Earthquake Hazard Analysis ) 35
تعریف تحلیل خطر لرزه ای: 35
سطوح خطر زلزله. 35
مطالعات لرزه زمین ساخت :. 36
برآورد پارامترهای لرزه خیزی :. 37
برآورد پارامترهای جنبش نیرومند زمین :. 37
خطرزائی. 39
فصل3: پهنه بندی لرزه ای. 41
3-1- پهنه بندی لرزه ای :. 41
3-2- بررسی عوامل موثر در وقوع زمین لغزش ها. 43
3-3- اولویت بندی عوامل موثر. 43
3-4- تهیه نقشه پراکنش زمین لغزش ها. 43
3-5- تهیه نقشه های عوامل موثر. 44
-6-3 روش های پهنه بندی لرزه ای. 44
-7-3 پهنه بندی لرزه ای به روش تعیینی (Deterministic Approach):  45
داده های قرن بیستم. 45
داده های تاریخی. 46
محاسبه بزرگای پتانسیل چشمه از طریق روابط ارائه شده که براساس طول موثر گسل می باشد.. 46
شناسائی چشمه های لرزه زا. 48
3-7-5- تعیین زمین لرزه کنترلی برای پارامترهای جنبش زمین. 49
انتخاب روابط كاهندگی برای پارامترهای جنبش زمین. 51
3-7-7- محاسبه پارامترهای طراحی جنبش زمین. 63
3-8- پهنه بندی لرزه ای به روش احتمالاتی (Probabilistic Approach):  64
3-8-1- شناسایی منابع لرزه ای و بررسی لرزه خیزی منطقه. 64
3-8-2- محاسبه رابطه بین فراوانی زلزله ها و بزرگای آنها ( توزیع بزرگا و محاسبه متوسط میزان رخ داد زمین لرزه ها)، محاسبه چگالی و توزیع احتمال. 65
3-8-3- انتخاب رابطه كاهندگی (تخمین حرکت زمین ). 65
3-8-4- محاسبه و بدست آوردن منحنی خطر لرزه ای سایت مورد نظر. 66
3-8-5- فرضیات در روش PSHA.. 66
نقشه های خطر زلزله. 68
-3-9 برآورد خطر زمینلرزه به روش احتمالاتی تصحیح شده. 69
3-10- تعیین سرچشمه های لرزه زا. 71
3-10-1- عدم قطعیت فاصله ای. 71
3-10-2- عدم قطعیت در اندازه. 73
3-11- تعیین پارامترهای لرزهخیزی. 74
3-11-1- انواع مختلف بزرگاهای زلزله. 74
3-11-2- یكنواخت سازی فهرست نامه زمین لرزه ها. 76
3-12- ضریب لرزه خیزی. 77
3-12-1- خط برازش گوتنبرگ – ریشتر. 77
روش تخمین بزرگترین احتمال (MLE) 77
روش Kijko . 78
3-12-4- تخمین β به روش کیجکو:( آهنگ لرزه خیزی). 79
3-12-5- تخمین (آهنگ رویداد سالیانه برای بزرگای سطحی). 81
تخمین )حداكثر بزرگای قابل انتظار از نظرآماری)  82
3-13- پارامتر های لرزه خیزی در چشمه های بالقوه زمینلرزه. 82
3-13-1- نرخ رویداد متوسط سالانه زمینلرزه ها در چشمه های بالقوه زمینلرزه. 83
تابع توزیع احتمال زمین لرزه ها. 83
محاسبه پارامتر لرزه خیزی v یا میزان متوسط رخ داد زمین لرزه  84
دوره بازگشت، احتمال سالیانه وقوع و عدم وقوع زلزله. 85
مفهوم ریسک وقوع زلزله. 85
3-14- تابع توزیع فضایی. 86
3-14-1- عوامل کنترل کننده موثر. 87
میزان اطمینان از چشمه بالقوه زمینلرزه تعیین شده. 87
جایگاه تکنونیکی چشمه بالقوه زمینلرزه. 87
عناصر ساختاری. 87
خصوصیات فعالیت لرزه ای. 88
فصل4: تحلیل خطر منطقه قم. 90
4-1- چکیده. 90
-2-4 مقدمه. 91
-3-4 هدف از اجراء :. 93
-4-4 توجیه ضرورت انجام طرح. 93
4-5- زمین ‌ریخت ‌شناختی. 94
4-6- چینه شناسی واحدهای سنگی منطقه مورد مطالعه. 96
4-7- وضعیت خطرپذیزی لرزه ای استان قم. 97
4-8- ساختارهای منطقه مورد مطالعه. 97
-9-4 گسلهای فعال اصلی منطقه. 98
4-10- مشخصات گسل های فعال منطقه:. 114
4-10-1- بررسی بزرگای زلزله. 116
4-10-2- تخمین ماكزیمم شتاب زمین. 118
4-11- پارامترهای اندازه گیری Parameters Scaling. 120
4-11-1- گزارش زمینلرزه های مهم رخ داده. 120
4-11-2- زمینلرزههای دستگاهی. 121

پایان نامه

 

4-11-3- توزیع سطحی رومرکز زلزله. 121
4-11-4- چگونگی توزیع زمانی زمینلرزهها. 122
4-11-5- توزیع بزرگای زمینلرزهها. 123
محاسبه بزرگی و فراوانی زمینلرزه ها به روش گوتنبرگ – ریشتر. 124
4-11-7- محاسبه بزرگی و فراوانی زمینلرزه ها به روش کیجکو – سلول. 125
برآورد دوره بازگشت زمین به روش کیجکو. 126
محاسبه، دوره بازگشت، احتمال سالیانه وقوع و عدم وقوع زلزله  127
4-11-10- محاسبه دوره بازگشت بر اساس درصد خطر و عمر مفید سازه. 127
4-11-11- محاسبه دوره بازگشت زلزله در استان. 129
4-12- تحلیل خطر قم به روش احتمالاتی (PSHA) 130
نمودار مربوط به حداکثر شتاب زمین (PGA) 130
-13-4 بر آورد خطر زمینلرزه به روش احتمالاتی تصحیح شده. 132
4-13-1- مشخصات گسل های فعال منطقه. 132
4-13-2- بررسی بزرگای زلزله. 134
4-13-3- تخمین شدت زلزله براساس طول چشمه و ماكزیمم شتاب زمین  135
نقشه های مربوط به حداکثر شتاب زمین (PGA) 137
4-14- مقایسه نتایج. 138
4-15- احتمال وقوع زلزله بر حسب دوره بازگشت در استان. 140
-16-4 سرعت موج برشی. 141
-17-4 طبقه بندی زمین. 141
4-18- پهنه بندی خطر زمین لغزش محدوده قم به روش قضاوت مهندسی. 150
چكیده. 150
4-18-2- مقدمه. 150
خصوصیات عمومی منطقه مورد مطالعه از نظر وجود عوامل زمین لغزش  150
روش انجام مطالعات. 152
روش تهیه نقشه پهنه بندی خطر زمین لغزش. 153
-19-4 تعیین طیف پاسخ شتاب زمین لرزه در ساختگاه. 157
4-19-1- چكیده. 157
4-19-2- طیف پاسخ. 157
طیف پاسخ شتاب جنبش زمین به روش احتمالاتی. 157
فصل5: نتیجه گیری. 160
5-1- مقدمه. 160
5-2- نتیجه گیری. 160
5-3- پیشنهادات. 162
منابع و مآخذ. 1623
پیوست. 1626
چکیده انگلیسی. 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست اشکال
شکل 1: نمای جانبی زمین. 17
شکل 2: نوع حرکت گسل ها. 18
شکل 3: ایالتهای لرزه زمینساختی ایران. 21
شکل 4: الف: حل صفحة گسل زمینلرزه های شرق ترکیه، قفقاز و شمال ایران   22
شکل 5: سازوكار كانونی زمینلرزه های شمال ایران. 23
شکل 6: نقشة گسلهای فعال سازوكار كانونی زمینلرزه ها و نواحی بیشینه تخریب زمینلرز ههای مخرب زاگرس. 25
شکل 7: گسلها و ساختارهای عمدة زون فرورانش مکران. 27
شکل 8: مدل های چشمه های لرزه ای در یک ایالت لرزه زمین ساخت. 32
شکل 9: ارتباط گسل فعال و ناشناخته. 34
شکل 10: تقسیم بندی گسل به قطعات كوچکتر. 35
شکل 11: توصیف منحنی خطر زلزله. 39
شکل 12: مراحل اساسی برآورد خطر زمینلرزه به روش تعینی. 47
شکل 13: انواع فاصله های چشمه لرزه زا تا سایت مورد نظر. 48
شکل 14: مقایسه چندین رابطه تجربی برای بدست آوردن زمین لرزه كنترلی   50
شکل 15: مراحل اساسی برآورد خطر زمینلرزه به روش احتمالاتی مرسوم   67
شکل 16: مراحل اساسی برآورد خطر زمینلرزه به روش احتمالاتی اصلاح شده   70
شکل 17: مثالهایی از هندسه های زون منابع مختلف. 72
شکل 18: تغییرات فاصله منبع تا محل برای هندسه های مختلف زون منبع   73
شکل 19: اثر سرعت لغزش گسل و اندازه زلزله بر پریود تکرار. 74
شکل20: محدوده محل سکونت شهر قم. 92
شکل 21: نقشه زمین شناسی شهر قم. 95
شکل 22: نقشه زمین شناسی جنوب قم. 96
شکل 23: نقشه پهنه رومرکزی زلزله. 98
شکل 24: تصویر ماهواره‌ای گسل خضر. 101
شکل 25: نقشه گسلهای بومی استان به فاصله 30 کیلومتری مرکز شهر   103
شکل 26: نقشه گسل قم – زفره. 105
شکل 27: تصویر ماهواره ای گسل رباط کریم. 108
شکل 28: گسل های فعال منطقه در محدوده ی شعاع مورد مطالعه به طول 150 کیلومتر.. 114
شکل 29:اهمیت فاصله ی گسل ها از ساختگاه را نشان می دهد. 118
شکل 30: پراکندگی زلزله های اتفاق افتاده در محدوده 150 کیلومتری استان قم.. 122
شکل 31: موقعیت چشمه های تعیین شده در منطقه قم. 133
شکل 32: عمق سنگ بستر لرزه ای شهر قم.. 143
شکل 33: نوع شرایط خاک در سراسر شهر قم.. 144
شکل 34: نقشه پهنه بندی شتاب افقی برای دوره بازگشت50 سال برای کل ناحیه.. 145
شکل 35: نقشه پهنه بندی شتاب افقی برای دوره بازگشت 475 سال برای کل ناحیه.. 145
شکل 36: نقشه پهنه بندی شتاب افقی برای دوره بازگشت 50 سال برای شهر قم. 147
شکل 37: نقشه پهنه بندی شتاب افقی برای دوره بازگشت 475 سال برای شهر قم. 148
شکل 38: نقشه پهنه بندی شتاب افقی استان برای دوره بازگشت 475 سال   149
شکل 39: نقشه استعداد زمین لغزش منطقه مورد مطالعه. 154
شکل 40: نقشه همباران منطقه مطالعاتی. 155
شکل 41: نقشه پهنه بندی خطر زمین لغزش منطقه مورد مطالعه. 156
 
 
 
 
 
 
 
 
 
 
 
 
فهرست جداول
جدول 1: پارامتر های ایالت های لرزه زمینساختی ایران.. 21
جدول 2: تخمین شدت زلزله بر اساس طول گسل.. 50
جدول 3: تعیین ضرایب GC و GB با توجه به نوع خاک.. 54
جدول 4: ضرایب رابطه كاهندگی بور برای محاسبه بزرگترین مؤلفه شتاب افقی.. 54
جدول 5: ضرایب مدل های کاهندگی.. 58
جدول 6: ضرایب مدل های کاهندگی برای منطقه البرز.. 59
جدول 7: ضرایب مدل های کاهندگی برای منطقه زاگرس.. 60
جدول 8: ضرایب رابطه زارع.. 62
جدول 9: ضرایب رابطه نوروزی.. 63
جدول 10: رابطه تجربی بین و Ms بدست آمده برای گستره های البرز، ایران مرکزی و زاگرس. 76
جدول 11: برآورد پارامترهای زلزله خیزی براساس زمینلرزه های ثبت شده در ایالت لرزه زمین ساختی ایران مركزی1997. 82
جدول 12: مشخصات گسل ها در محدوده ی 150 کیلومتری قم.. 115
جدول 13: مقدار بزرگای گسل ها.. 117
جدول 14: ماكزیمم شتاب افقی گسل ها.. 119
جدول 15: زمینلرزه های مهم رخ داده تاریخی تا شعاع 150 کیلومتری منطقه مورد مطالعه. 121
جدول 16: برآورد بزرگا بر اساس دوره بازگشت و همچنین تعداد رویداد زمین لرزه در یک دوره 113 ساله. 125
جدول 17: برآورد دوره بازگشت بر اساس بزرگا.. 126
جدول 18: برآورد بزرگا بر اساس دوره بازگشت.. 126
جدول 19: دوره بازگشت بر اساس درصد خطر و عمر مفید سازه.. 128
جدول 20: آهنگ رویداد سالیانه بر اساس درصد خطر و عمر مفید سازه.. 128
جدول 21: احتمال رویداد یک زمین لرزه بر اثر جنبایی سرچشمه خطی.. 131
جدول 22: هندسه چشمه های بالقوه زمینلرزه تعین شده در گستره قم.. 134
جدول 23: مقدار طولی از چشمه های مورد نظر که در محدوده ی 150 کیلومتری قرار دارد و مساحت چشمه و همچنین نزدیک ترین فاصله ی چشمه از شهر قم. 135
جدول 24: مقدار بزرگای گسل ها.. 136
جدول 25: احتمال رویداد یک زمین لرزه بر اثر جنبایی سرچشمه خطی.. 137
جدول 26: نتایج احتمال های محاسبه شده برای شتابهای مورد نظر.. 139
جدول 27: احتمال وقوع زلزله بر مبنای دوره بازگشت و بزرگا.. 140
 
 

 
 
 
فصل اول :
 
کلیات و ساختار زمین
 
          q          عوامل موثر در جنبش نیرومند زمین
 
q          ساختار تکتونیکی صفحات و لرزه خیزی منطقه
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

فصل1: کلیات و ساختار زمین

 
 
 
 
 

1-1- عوامل موثر در جنبش نیرومند زمین :

بصورت كلی عوامل موثر در جنبش نیرومند زمین در اثر رویداد زمین لرزه را می توان در دو بخش مورد بررسی قرار داد، این دو بخش شامل ویژگی های چشمه لرزه زا، و شرایط ژئوتكنیک لرزه ای ساختگاه سازه ها می باشد. بنابراین هریک از بخش ها و نقش آنها در جنبش نیرومند زمین باید مورد بررسی قرار گیرد تا ویژگی های جنبش نیرومند زمین در شالوده سازه ها و بهینه كردن معیارهای طراحی سازه ها در برابر زمین لرزه تخمین و در محاسبات مورد استفاده قرار گیرد .{1}
 
 
 
 

1-1-1- ویژگیهای چشمه های لرزه زا :

رویداد زمین لرزه ها در بخش پوسته زمین ناشی از نیروهای زمین ساختی است كه برپایه تئوری زمین ساخت ورقه ای از سال ١٩٦٠ مطرح گردید در این تئوری بیان می شود كه سنگ كره از تعداد زیادی بلوكها بصورت ورقه تشكیل شده است كه این ورقه ها نسبت به یكدیگر در حال حركت می باشند. مرز این بلوكها همواره با رویداد زمین لرزه های بزرگ روبرو است. معتبرترین تشریح برای علت ایجاد حركت ورقه ها برپایه تعادل ترمودینامیک مواد تشكیل دهنده زمین استوار است. بخش فوقانی گوشته در تماس با پوسته سرد می باشد، درحالیكه بخش تحتانی در تماس با هسته داغ زمین است. بدیهی است كه بایستی یک گرادیان دما در گوشته برقرار باشد.
شکل 1: نمای جانبی زمین
تئوری زمین ساخت ورقه ای حركت نسبی ورقه ها را با توجه به سه نوع مرز (ورق های فرورانشی، گسترش جانبی و گسترش انتقالی)، به سادگی توصیف و تعیین می نماید. در دیگر موارد نیز ممكن است در اثر گسترش، لبه ورقه ها شكسته و سبب تشكیل ورقه كوچك تر یا خرد ورقه محصور بین ورقه های بزرگتر شود. حركت بین دو بخش از پوسته سبب انقطاع جدید یا پیشروی خطوط شكست موجود در ساختار زمین شناسی پوسته می شود كه به آن گسل می گویند. گسل ها بسته به نوع حركتشان به سه گروه اصلی دسته بندی می شوند که عبارتند از: گسلهای شیب لغز، امتداد لغز و یا تركیبی از آنها می باشد.
شکل 2: نوع حرکت گسل ها
تئوری بازگشت الاستیک بیان می كند كه وقوع زمین لرزه ها موجب آزادی تنش در امتداد بخشی از گسل می شود و تا زمانی كه تنش ها فرصت كافی برای ذخیره شدن مجدد را داشته باشند گسیختگی بعدی و یا به عبارت دیگر زمین لرزه بعدی اتفاق خواهد افتاد. از آنجائیكه زمین لرزه ها موجب رهاسازی انرژی جمع شده برروی گسل می شوند، وقوع آنها در محدوده ای كه فعالیت لرزه ای برای مدتی كم و یا اصلا اتفاق نیفتاده است محتمل تر است . با شناسایی حركات گسل در طی لرز ه خیزی گذشته و در امتداد آن می توان به نبود فعالیت لرزه ای در پاره ای از مكانهای آن پی برد.
با مطالعات لرزه زمین ساخت می توان از شكستگی ساختارهای زمین شناسی و هندسه آنها پیرامون ساختگاه سازه ها مطلع شد و نهایتا می توان مدل لرزه زمین ساختی یا درعمق برش لرزه زمین ساختی از آنها تهیه نمود و مخاطرات احتمالی گسلش زمین و یا رویداد احتمالی زمین لرزه برروی آنها را برای تخمین رویداد زمین لرزه های آتی و چگونگی ویژگیهای آنها پیش بینی نمود.
هندسه گسلها، زون خرد شده، نوع و سازوكار آنها می تواند در برآورد پتانسیل حداكثر زمین لرزه محتمل برروی آنها ما را كمك نماید و این امر در مطالعات زمین ساخت و لرزه زمین ساخت صورت می پذیرد. سن گسلها از عوامل مهم در رویداد زمین لرزه برروی آنهاست بطوریكه گسل های جوان از اهمیت بیشتری برخوردار هستند و مطالعات نو زمین ساخت می تواند كمك زیادی در كلاس بندی گسل ها از دیدگاه فعالیت لرزه ای داشته باشند.
معمولا روابط تجربی در پیوند با هندسه گسل، حداكثر توان لرزه زایی و میزان بیشینه جابجایی برروی آن وجود دارد كه تا حدودی در تخمین رویدادهای زمین لرزه ای آتی منطقه می تواند موثر واقع شود . بزرگای ز مینلرزه رابطه مستقیم با انرژی آزاد شده توسط زمین لرزه دارد.
یكی از ویژگیهای چشمه لرزه زا ژرفای كانونی زمین لرزه ها می باشد. تحقیقات و پژوهشهای زیادی برروی ژرفای كانونی زمین لرزه ها انجام شده است. بصورت كلی ژرفای زمین لرزه ایی كه در پیوند با حركت فرورانش ایجاد می شود نسبتا عمیق و ژرف می باشد كه تا عمق ٨٠٠ كیلومتری سطح زمین نیز گزارش شده است، ولی ژرفای كانونی زمین لرزه ایی كه در پیوند با گسترش جانبی اقیانوسی مشاهده شده كم عمق بوده و ژرفای آنها كمتر از ٢٠ كیلومتر می باشد و ژرفای كانونی زمین لرزه هایی كه با گسترش انتقالی در پوسته قاره ای مشاهده شده اند دارای ژرفای كمتر از پوسته زمین می باشند یعنی كمتر از ٦٠ كیلومتر . رویداد زمین لرزه های ایران بسیار سطحی بوده است و به جز منطقه مكران، تقریبا در تمام ایران كمتر از ٢٠ كیلومتر برآورد شده است و به همین دلیل لایه لرزه زا درفلات ایران را می توان بین ژرفای ١٠ تا ٢٠ كیلومتر درنظر گرفت.

1-1-2- ویژگیهای شرایط ژئوتكنیک لرزه ای ساختگاهی برجنبش نیرومند زمین :

شرایط ژئوتكنیک لرزه ای ساختگاهی بركلیه پارامترهای مهم جنبش نیرومند زمین نظیر دامنه، محتوی فركانسی و مدت دوام لرزش اثر قابل ملاحظه ای می گذارد. میزان تاثیر، تابع هندسه، خواص مصالح لایه های زیر سطحی، توپوگرافی ساختگاه و ویژگیهای امواج لرزه ای كه از چشمه لرزه زا تولید و از لایه های سنگی مختلف عبور نموده تا به پی سنگ ساختگاه وارد شود، میباشد.
طبیعت اثرات ژئوتكنیک لرزه ای ساختگاهی بر تقویت جنبش نیرومند زمین را می توان با بهره گیری از روش های مختلف مانند تحلیل ساده تئوری پاسخ زمین، اندازه گیریهای جنبش واقعی سطحی و زیرسطحی در همان ساختگاه و اندازه گیری جنبش نیرومند سطح زمین در ساختگاه هایی با شرایط متفاوت از ساختگاه موردنظر تشریح نمود.
اثرات هندسی سنگ بستر برروی جنبش نیرومند زمین تاثیر پذیر می باشد. گرچه بی قاعدگیهای توپوگرافی سنگ بستر موجب پراكنده ساختن امواج زمینلرزه شده و الگوهای پیچیده ای از تقویت یا كاهیدگی جنبش نیرومند زمین را ایجاد می كنند لیكن به هرحال جنبش نیرومند زمین در بالای ارتفاعات معمولا تقویت و تشدید می شوند.

1-2- ساختار تکتونیکی صفحات و لرزه خیزی منطقه

 

1-2-1- تکتونیک صفحات

اساس تئوری تکتونیک صفحات این است که تقریبا 12 صفحه اصلی سازنده لایه 70 تا 150 کیلومتری خارجی زمین هستند که به عنوان پوسته یا لیتو سفر شناخته می شوند. علاوه بر این می دانیم که این صفحات حرکت آرامی دارند و نیروی محرک آنها به طور کامل شناخته نمی شود. فرض می شود که موادی که زیر پوسته واقع شده اند و به عنوان آستنوسفر شناخته شده اند بدلیل اختلاف دمایی که در عمقشان وجود دارد حرکت می کنند. حرکت نسبی لایه های مجاور منجر به تغییر شکل و کرنش سنگ ها می شود، سنگ تغییر شکل یافته در نهایت شکسته و جایجا می شود که منجر به ایجاد زمین لرزه می شود. این گونه لرزه ها، لرزه های تکنونیکی هستند که می تواند در مرز صفحات یا داخل صفحات اتفاق افتد. {5}

1-2-2- ایالتهای لرزه زمینساختی ایران

ایالت لرزه زمینساختی، پهنه ای است كه تحت رژیمهای ژئودینامیكی كن ونی، دارای جایگاه تكتونیكی همانند و الگوی لرز هخیزی یكسان باشد (یی ١و همكاران، ١٩٩٥ ). با توجه به این مفهوم، میرزایی و همکاران (١٩٩٨) ایران را به پنج ایالت لرزه زمینساختی عمدة : ١- البرز – آذربایجان ٢- كپه داغ ٣- زاگرس ٤- ایران مركزی و شرق ایران و ٥- مكران، تقسیم کرده اند كه خصوصیات عمده آنها به اختصار به صورت زیر است. {5}
شکل 3: ایالتهای لرزه زمینساختی ایران(میرزایی 1977) {5}
 
جدول 1: پارامتر های ایالت های لرزه زمینساختی ایران{5}

 

 

 

 

 

 

 

 

 
 
 
موضوعات: بدون موضوع  لینک ثابت
 [ 07:39:00 ب.ظ ]




فصل اول – مقدمه و کلیات تحقیق.. 1
1-1- مقدمه. 2
1-2- بیان مسأله. 2
1-3- اهداف تحقیق. 4
1-4- تعریف. 5
1-5- فرضیات تحقیق. 6
1-6- نوآوری‌های تحقیق. 6
1-7- ساختار پایان‌نامه. 6
 
فصل دوم – ادبیات و پیشینه تحقیق. 8
2-1- مقدمه. 9
2-2- روش های تحلیلی. 9
2-2- 1-تحلیل مدل سد-مخزن بدون در نظر گرفتن اثر اندر کنش  10
2-2- 1-1-بررسی روش وسترگارد. 12
2-2-2- حل چوپرا. 13
2-2-3- اثر اندرکنش سد و مخزن. 14
2-3-روش‌های عددی. 14
2-3-1- روش اویلری-لاگرانژی. 15
2-3-2- روش لاگرانژی- لاگرانژی. 15
2-3-3- ارزیابی روش‌های اویلری و لاگرانژی در مدل‌سازی مخزن  16
2-4- توسعه و کاربرد پیش تنیدگی. 18
2-4-1- اصول پیش‌تنیدگی. 19
2-4-1- 1-روش پیش کشیدگی. 20
2-4-1-2- روش پس کشیدگی. 20
2-4-2- توسعه روش پس کشیدگی. 20
2-4-2-1- سیستم چسبنده. 21
2-4-2-2- سیستم غیر چسبیده. 22
2-5- پس تنیدگی در سدها. 23
2-5-1- مقدمه. 23
2-5-2- مواد پس تنیدگی. 24
2-5-3- فواصل کابل‌ها. 25
2-5-4- صرفه‌جویی در حجم بتن. 26
2-5-5- تعیین مقدار نیروی پس تنیدگی در كابل‌ها. 26
2-5-6- پس تنیدگی در سدهای بتنی وزنی. 29
2-5-7- بررسی پس تنیدگی در سدهای بتنی وزنی توسط محققین  36
 
فصل سوم – روش تحقیق. 40
3-1- مقدمه. 41
3-2- روش‌های عددی برای تحلیل دینامیکی. 42
3-2- 1- ارزیابی روش‌های تحلیل دینامیکی. 43
3-2-2- مدل‌سازی زلزله جهت انجام تحلیل دینامیكی در نرم‌افزار Ansys…….. 44
3-2-2- 1-روش نیومارک. 45
3-3-مدل‌سازی سیستم سازه و سیال به روش اجزای محدود مبتنی بر نرم‌افزار Ansys 47
3-3-1- مقدمه. 47
3-3-2- مدل‌سازی محیط مخزن به روش اجزای محدود. 48
3-3-2-1- المان‌های سیال متکی بر تغییر مکان. 49
3-3- 2-2-Fluid80. 50
3-3-3- مدل‌سازی سازه سد به روش اجزای محدود. 52
3-3-3-1- المان Solid65. 52
3-3-3-2- رفتار المان Solid65 در حالت کلی. 54
3-3-3-3- رفتار خطی بتن. 55
3-3- 4- مدل‌سازی کابل‌ها با المان Link10. 55
3-3-5- مدل‌سازی صفحه سر کابل با المان Shell181. 56
3-3-6- مدل‌سازی اندرکنش مخزن و سازه به روش اجزای محدود  57
3-3-6-1– مدل سازی اندرکنش مخزن و سیال به روش لاگرانژی  58
3-3-7- مدل‌سازی اندرکنش سد و کابل‌های پس تنیدگی. 58
3-4- مدل‌سازی اثر نیروی پس تنیدگی در Ansys 58
3-5- تعیین سطح مقطع کابل. 59
 
فصل چهارم – تحلیل عددی و ارائه نتایج. 61
4-1- مقدمه. 62
4-2- شتاب نگاشت‌ها. 62
4-3- کنترل صحت مدل‌سازی. 64
4-3-1- روش مدل‌سازی…….. 65
4-3-2- تغییر مکان هیدروستاتیک در مخزن. 65
4-3-3- فشار هیدروستاتیک در مخزن. 67
4-3-4- بررسی تأثیر عرض کف در تحلیل استاتیکی. 67
4-3-4-1- سیستم سد-پی. 68
4-3-4-2- سیستم سد-پی-مخزن-کابل. 69
4-3-5- ارتعاش سد هارمونیک. 70
4-3-6- آنالیز سد Pine Flat…….. 71
4-3-6-1- مشخصات هندسی و فرضیات در نظر گرفته شده برای سد Pine Flat 72
4-3-6- 2- آنالیز مودال و تعیین ضرایب میرایی سیستم سد-پی-مخزن  72
4-3-6-3- آنالیز دینامیکی سد Pine Flat 73
4-4- نتایج تحلیل دینامیکی مدل سد پس‌تنیده تحت اثر زلزله  75
4-4-1- اثر پس‌تنیدگی بر تغییر مکان افقی تاج سد به روش اعمال نیروی ترکیبی…….. 75
4-4-2- اثر پس‌تنیدگی بر تغییر مکان افقی تاج سد به روش اعمال دما  81
4-4-3- اثر میزان حجم مخزن بر تغییر مکان افقی تاج سد. 88
4-4- 4- بررسی تاثیر پس‌تنیدگی بر تنش کششی و تغییر مکان در سد  90
4-5- فاصله مناسب کابل‌ها در سد پس‌تنیده. 97
1-روش استفاه از چند کابل در تعیین فاصله مناسب. 97

پایان نامه

 

4-5-2- روش استفاده از یک کابل در تعیین فاصله مناسب…….  102
 
فصل پنجم – نتیجه گیری. 110
5- 1- مقدمه. 111
5-2- نتایج…….. 111
5-3- پیشنهادات……. 113
 
منابع:. 114

 

 
 
 
 
 
 
 
 
 
 
 
 
فهرست جداول
عنوان                                                                                                          صفحه
جدول 4-1- مشخصات مصالح سد بتنی وزنی پس‌تنیده در تحلیل خطی  64
جدول 4-2- پریود و فرکانس ارتعاش آزاد سیستم سد-پی-مخزن  73
جدول 4-3- میزان نیروی پس‌تنیدگی وارد شده به کابل و صفحه (MN)  75
جدول 4-4- پاسخ افقی تاج سد تحت شیب‌های پایین‌دست مختلف در زلزله Taft 80
جدول 4-5- پاسخ افقی تاج سد تحت شیب‌های پایین‌دست مختلف در زلزله Elcentro 80
جدول 4-6- پاسخ افقی تاج سد تحت شیب‌های پایین‌دست مختلف در زلزله Taft 86
جدول 4-7- پاسخ افقی تاج سد تحت شیب‌های پایین‌دست مختلف در زلزله Elcentro. 86
جدول 4-8- نتایج تغییر مکان افقی تاج سد پس‌تنیده به روش ترکیبی(cm)  87
جدول 4-9- نتایج تغییر مکان افقی تاج سد پس‌تنیده به روش اعمال دما(cm). 87
جدول 4-10- پاسخ افقی تاج سد تحت ارتفاع‌های مختلف مخزن در زلزله Taft 89
جدول 4-11-پاسخ افقی تاج سد تحت ارتفاع‌های مختلف مخزن در زلزله Elcentro 89
جدول 4-12- میزان نیروی پس‌تنیدگی وارد شده به کابل و صفحه  90
جدول 4-13- حداکثر تنش کششی (kPa) تحت مؤلفه افقی و قائم زلزله Taft 95
جدول 4-14- حداکثر تغییر مکان افقی تاج سد (cm) تحت مؤلفه افقی و قائم زلزله Taft 95
جدول 4-15- حداکثر تنش کششی (kPa) تحت مؤلفه افقی و قائم زلزله Elcentro 96
جدول4-16- حداکثر تغییر مکان افقی تاج سد (cm) تحت مؤلفه افقی و قائم زلزله Elcentro. 96
جدول 4-17- حداکثر تنش کششی در شیب‌های پایین دست 55/0 و 6/0 تحت مؤلفه افقی و قائم زلزله Taft 103
جدول 4-18- حداکثر تنش کششی در شیب‌های پایین دست 65/0 و 7/0 تحت مؤلفه افقی و قائم زلزله Taft 104
جدول 4-19- حداکثر تنش کششی در شیب‌های پایین دست 55/0 و 6/0 تحت مؤلفه افقی و قائم زلزله Elcentro. 105
جدول 4-20- حداکثر تنش کششی در شیب‌های پایین دست 65/0 و 7/0 تحت مؤلفه افقی و قائم زلزله Elcentro . 106
جدول 4-21- درصد کاهش تنش کششی و تغییر مکان افقی در شیب‌های پایین دست مختلف تحت مؤلفه افقی و قائم زلزله Taft 107
جدول 4-22- درصد کاهش تنش کششی و تغییر مکان افقی در شیب‌های پایین دست مختلف تحت مؤلفه افقی و قائم زلزله Elcentro. 108
 
 
 
فهرست اشکال
عنوان                                                                                                           صفحه
شکل 1-1- مدل سد-پی-مخزن-کابل سد بتنی وزنی پس‌تنیده. 5
شکل 2-1- مدل سد و مخزن مورد استفاده وسترگارد. 11
شکل 2-2- تغییرات فشار سهموی وسترگارد. 12
شکل 2-3- کابل‌های پس‌تنیدگی. 25
شکل 2-4- سد بتنی وزنی پس‌تنیده. 27
شکل 2-5- سدهای مقاوم‌سازی شده. 31
شکل 2-6- سدهای مورد مطالعه. 33
شکل 2-7- رشته‌های کابل مورد استفاده در سد منجیل جهت پس‌تنیده کردن. 33
شکل 2-8- نصب کابل‌های پس‌تنیده بر روی سد Ink. 35
شکل 2-9- مقطع سد بهسازی شده Ink. 36
شکل 3-1- رابطه فشار و کرنش حجمی در آب. 49
شکل 3-2- مشخصات هندسی المان Fluid80. 51
شکل 3-3- المان بتن Solid 65. 52
شکل 3-4- هندسه ترک و تنش‌ها. 53
شکل 3-5- المان Link10. 56
شکل 3-6- المان Shell181. 57
شکل 3-7- نمودار تنش-کرنش فولاد پر مقاومت. 60
شکل 4-1- به ترتیب شتاب نگاشت مؤلفه افقی زلزله Taft ؛ شتاب نگاشت مؤلفه قائم زلزله Taft ؛ شتاب نگاشت مؤلفه افقی زلزله Elcentro ؛ شتاب نگاشت مؤلفه قائم زلزله Elcentro. 63
شکل 4-2- مدل اجزای محدود سیستم سد-پی-مخزن. 66
شکل 4-3- مقایسه نتایج تغییر مکان تئوری و نرم‌افزار Ansys سیال مخزن در سیستم سد-پی-مخزن. 66
شکل 4-4- مقایسه فشار هیدرودینامیکی مخزن و Ansys سیال مخزن در سیستم سد-پی-مخزن. 67
شکل 4-5- مقایسه تنش قائم کف سد در حالت تئوری و نرم‌افزار Ansys در سیستم سد-پی با عرض کف 50 متر. 68
شکل 4-6- مقایسه تنش قائم کف سد در حالت تئوری و نرم‌افزار Ansys در سیستم سد-پی با عرض کف 70 متر. 69
شکل 4-7- مقایسه تنش قائم در کف سد در حالت تئوری و نرم‌افزار Ansys در سیستم سد-پی-مخزن-کابل با عرض کف سد 50 متر. 69
شکل4-8- مقایسه تنش قائم در کف سد در حالت تئوری و نرم‌افزار Ansys در سیستم سد-پی-مخزن-کابل با عرض کف سد 70 متر. 70
شکل4-9- پاسخ فشار در المان پاشنه سد صلب تحت مؤلفه افقی شتاب هارمونیک. 71
شکل4-10- مقطع هندسی مدل سد Pine Flat 72
شکل4-11- مدل اجزای محدود سیستم سد-پی-مخزن Pine Flat 74
شکل4-12- پاسخ تغییر مکان افقی تاج سد Pine Flat با در نظر گرفتن پی انعطاف‌پذیر تحت شتاب نگاشت مؤلفه افقی و قائم زلزله Taft 74
شکل4-13- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 78/0 m= . 76
شکل 4-14- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 7/0 m=. 77
شکل 4-15- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 65/0 m=. 78
شکل4-16- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 6/0 m=. 79
شکل4-17- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 65/0 m=. 82
شکل4-18- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 7/0 m=. 83
شکل4-19- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 65/0 m=. 84
شکل4-20- پاسخ تغییر مکان افقی تاج سد Pine Flat به ترتیب تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Taft و تحت اثر مؤلفه‌های افقی و قائم زلزله‌ Elcentro در شیب 6/0 m=. 85
شکل4-21- مقایسه میانگین تغییر مکان افقی تاج سد در شیب‌های پایین‌دست مختلف به دو روش ترکیبی و اعمال دما. 88
7/0m=. 91
m=. 92
شکل 4-24- به ترتیب تنش قاتم در پاشنه سد تحت اثر مؤلفه افقی و قائم زلزله Taft و تغییر مکان افقی تاج سد تحت اثر مؤلفه افقی و قائم زلزله Taft در 6/0m=. 93
شکل 4-25- به ترتیب تنش قاتم در پاشنه سد تحت اثر مؤلفه افقی و قائم زلزله Taft و تغییر مکان افقی تاج سد تحت اثر مؤلفه افقی و قائم زلزله Taft در 55/0m=. 94
شکل 4-26- حداکثر تنش کششی پاشنه، در طول سد با 7/0 m= تحت مؤلفه افقی و قائم زلزله  Taft 98
شکل 4-27- حداکثر تنش کششی پاشنه، در طول سد با 65/0m= تحت مؤلفه افقی و قائم زلزله Taft 98
شکل 4-28- حداکثر تنش کششی پاشنه، در طول سد با 6/0 m= تحت مؤلفه افقی و قائم زلزله  Taft 99
شکل 4-29- حداکثر تنش کششی پاشنه، در طول سد با 55/0 m= تحت مؤلفه افقی و قائم زلزله Taft 99
شکل 4-30- حداکثر تنش کششی پاشنه، در طول سد با 7/0 m= تحت مؤلفه افقی و قائم زلزله Elcentro. 100
شکل 4-31- حداکثر تنش کششی پاشنه، در طول سد با 65/0m= تحت مؤلفه افقی و قائم زلزله Elcentro. 100
شکل 4-32- حداکثر تنش کششی پاشنه، در طول سد با 6/0m= تحت مؤلفه افقی و قائم زلزله Elcentro. 101
شکل 4-33- حداکثر تنش کششی پاشنه، در طول سد با 55/0m= تحت مؤلفه افقی و قائم زلزله Elcentro. 101
 
 
 
 
 
 
 
 
فصل اولمقدمه و کلیات تحقیق
 
 
 
 
 
 
 
 
 
 
1-1- مقدمه
از آنجا که آب مایه‌ی حیات در زندگی بشر می‌باشد، جهت ذخیره‌سازی برای استفاده بهینه از آن روش‌های مختلفی بكار گرفته می‌شود كه ساخت سد از جمله مهم‌ترین ابزار جهت ذخیره آن بشمار می‌رود. سدها در جوامع صنعتی بناهای مهمی محسوب می‌شوند چرا که علاوه بر ذخیره آب، مصرف شرب و کشاورزی، جهت تولید انرژی نیز از آن می‌توان استفاده کرد.
در ابتدای صنعت سدسازی، سد‌ها كوچك بوده که با پیشرفت علم و تكنولوژی‌، سدها بزرگ و حجم مخزن پشت سد نیز افزایش یافته است بنابراین تخریب سدهای بزرگ در زمان زلزله می‌تواند موجب خسارات عظیمی به مناطق پایین‌دست سد شود لذا با پیشرفت علوم مهندسی در تحلیل سازه سد، سعی بر ساخت سدهایی با ابعاد بهینه، اقتصادی و ایمن شده است. از طرفی بالا رفتن عمر سدها می ­تواند موجب کاهش عملکرد مناسب آنها گردد ضمن اینکه با بالا رفتن استانداردهای ایمنی، داشتن برنامه‌های مختلف و وسیع نوسازی و مقاوم‌سازی ضرورت ارزیابی ایمنی این سازه­ها اجتناب ناپذیر می­گردد.
1-2- بیان مسئله
سدهای بتنی وزنی به دلیل ساختمان ساده، سهولت در ساخت، ایمنی، در هر ارتفاع دلخواه و در شرایط مختلف طبیعی از جمله در شرایط سخت زمستانی به طور وسیعی در دنیا مورد توجه قرار گرفته‌اند. سدهای بتنی وزنی در محل‌هایی که دارای پی مستحکم باشند، احداث می‌شوند. در سدهای بتنی وزنی عمده پایداری سد ناشی از وزن سد بوده و ممکن است درصدی از وزن آب نیز به منظور افزایش پایداری کمک گرفته شود. نام سدهای وزنی از كلمه Gravity به معنی ثقل و سنگینی گرفته شده است كه دلیل آن نیز مقاومت و پایداری این نوع سدها در برابر نیروهای اصلی مؤثر، یعنی فشار افقی آب در اثر وزن سازه می‌باشد.
امروزه با توجه به پیشرفت علوم در طراحی سازه سد و به دلیل نیاز به افزایش ارتفاع در برخی از سدها یا عدم مقاومت كافی برخی سدهای بتنی وزنی در برابر نیروهای مختلف از جمله نیروی زلزله و نیروی زیر فشار لزوم مقاوم‌سازی این سازه‌ها اجتناب‌ناپذیر می‌باشد. همچنین بسیاری از سدهای قدیمی موجود براساس ضوابط قدیمی تحلیل و طراحی گردیده‌اند که با توجه به محدودیت‌های تغییر ضوابط آیین‌نامه، ضرورت بازنگری در سدهای بتنی موجود اجتناب‌ناپذیر می‌باشد که در این میان ممکن است بعضی سدها ضوابط آیین‌نامه را اقنا ننموده و نیاز به ترمیم و یا بهسازی داشته باشند. این ترمیم و یا بهسازی می‌تواند با بهره گرفتن از کابل پس‌تنیده صورت بگیرد. تكنیک پس تنیدگی یكی از راهكارهای مقاوم‌سازی جهت كاهش زیرفشار و حذف تنش‌های كششی در سدها می‌باشد که در این‌صورت لزوم تعیین فاصله بهینه بین کابل‌های پس‌تنیده اجتناب‌ناپذیر می‌باشد.
روش‌های گوناگونی جهت تحلیل این سازه ارائه شده که به طور عمده این روش‌ها را می­توان به دو دسته تحلیلی و عددی تقسیم کرد.
در روش تحلیلی اساس حل بر روابط منطقی و دقیق می‌باشد، به‌طوری‌که با تعیین معادله حاکم بر رفتار سد و مخزن، این معادله را می‌توان با روابط ریاضی به طور مستقیم حل نمود. این روش اولین بار در سال 1933 میلادی توسط وسترگارد [40] مطرح شد که با ارائه روش جرم افزوده نگاه جدیدی از درک هیدرودینامیکی وارد برسد ارائه نمود.
پس از وسترگارد ، چوپرا [14] و محققین دیگر روش‌های مختلفی را جهت حل تحلیلی معادلات حاکم بر سد و مخزن ارائه نمودند، که به آن پرداخته می‌شود.
حل دقیق وسترگارد و حتی محققین بعد از آن همراه با فرض‌های ساده شونده‌ای بود، که در صورت عدم در نظر گرفتن آنها و اعمال شرایط حقیقی به ویژه در هنگام اعمال نیروی زلزله، مسئله را بسیار پیچیده و غیرقابل حل می‌نمود. با توجه به پیچیدگی روش حل تحلیلی تحت شرایط حقیقی و یا پیشرفت تکنولوژی ، محققین روش‌های عددی را جهت حل این مسئله مورد مطالعه قرار دادند. این روش‌ها با حجم عملیاتی بالا متکی بر سرعت کامپیوترها در انجام حل تکراری یک الگوریتم مشخص می‌باشند.
تحلیل سدها به روش عددی با توجه به وجود سیال به‌عنوان محیط مخزن، برخلاف سازه‌های معمول دارای پیچیدگی‌های خاصی است. روش‌های مختلفی جهت مدل ریاضی سیال ارائه شده است که می‌توان این روش‌ها را به سه گروه عمده تقسیم نمود: روش اول جرم افزوده است که در این روش سیال به‌صورت یک جرم اضافی به بدنه سد اضافه شده و همراه با سد ارتعاش می‌کند. روش دوم ، روش اویلری است که در این روش به بررسی تاریخچه زمانی متغیر یک نقطه پرداخته می‌شود. روش سوم، روش لاگرانژی است که به بررسی متغیر مشخص در نقاط دلخواه می‌پردازد.
1-3- اهداف تحقیق
هدف از این تحقیق تحلیل سدهای بتنی وزنی پس‌تنیده و بدون پس‌تنیدگی و تعیین فاصله مناسب کابل‌های پس‌تنیده با توجه به شیب پایین‌دست می‌باشد. بر این اساس با توجه به شیب پایین‌دست سد فاصله و اندازه کابل‌ها را تغییر داده تا به ازای آن حجم بتن‌ریزی و نیز طول کابل مصرفی به حداقل مقدار خود برسد.
در این تحقیق پاسخ سیستم سد-پی-مخزن در حالت پس تنیده و بدون پس‌تنیدگی با مدل‌سازی به روش اجزا محدود براساس فرمول‌بندی لاگرانژی-لاگرانژ ی سیستم سد-پی-مخزن و نیز مدل‌سازی کابل تحت اثر زلزله مورد بررسی قرار گرفته است. بدین منظور از نرم افزار Ansys که دارای قابلیت مدل‌سازی و گرافیكی بالائی می‌باشد جهت تحلیل دینامیکی سیستم مورد بررسی با فرض رفتار خطی مصالح استفاده و نتایج حاصل از تحلیل دینامیكی خطی سیستم در حالات مختلف مورد بررسی قرار گرفته است.
1-4- تعریف
در این تحقیق به جهت شناخت سیستم سد-پی-مخزن-کابل، نامگذاری بخش های یک سد بتنی وزنی مطابق شکل 1-1 می باشد.
شکل1- 1- مدل سد-پی-مخزن-کابل سد بتنی وزنی پس‌تنیده
1-5- فرضیات
فرضیات مورد استفاده در این تحقیق به شرح ذیل می باشند:

  • رفتار مصالح سد و مخزن اعم از بتن، آب و كابل ایزوتروپ، همگن و خطی می‌باشد.
  • تغییر شکل‌ها کوچک می باشد.
  • اثر زلزله بر كل سیستم سد و مخزن به‌صورت یكنواخت می‌باشد.

1-6- نوآوری‌های تحقیق

  • ارائه یک مدل نرم‌افزاری ترکیبی از سد بتنی وزنی به همراه کابل‌های پس‌تنیده با صفحه فولادی.
  • مدل‌سازی پس‌تنیدگی با روش اعمال دما.
  • تحلیل مدل سه بعدی سد بتنی وزنی با عرض نسبتاً واقعی.
  • ارائه حدود فاصله مناسب کابل‌های پس‌تنیدگی برای بهسازی و مقاوم‌سازی سدهای بتنی وزنی پس‌تنیده.

1-7- ساختار كلی پایان‌نامه:
این پایان‌نامه در پنج فصل تهیه گردیده است كه به طور خلاصه به شرح زیر می‌باشند:

  • در فصل اول مقدمه‌ای بر لزوم انجام و کلیاتی از کارهای انجام شده، ارائه می‌شود.
  • در فصل دوم با در نظر گرفتن شرایط مسئله، معادلات حاکم بر مسئله معرفی و سپس خلاصه‌ای از مطالعات و کارهای انجام شده توسط سایر محققین ارائه می‌شود.
  • در فصل سوم فرمول‌بندی ریاضی سیستم سد-پی- مخزن با احتساب اندرکنش و روش‌های حل دستگاه معادلات دینامیکی با بهره گرفتن از روش اجزای محدود معرفی و نیز چگونگی محاسبه کابل‌های پس‌تنیدگی و مدل‌سازی آن در روش اجزا محدود در تحلیل استاتیکی و دینامیکی ارائه می‌گردد.
  • در فصل چهارم ابتدا صحت مدل‌سازی کامپیوتری مورد بررسی قرار گرفته و سپس نتایج تحلیل سیستم سد-پی-مخزن در حالت پس‌تنیده با قرارگیری کابل‌ها در نقاط مختلف و تغییر شیب پایین‌دست سد بررسی می‌گردد.
  • در فصل پنجم نتیجه‌گیری و پیشنهاد‌هایی برای ادامه کار ارائه می‌گردد.

 
 
 
 
 
فصل دوم  ادبیات موضوع و پیشینه تحقیق
 
 
 
 
 
2-1- مقدمه
با توجه به اهمیت سازه سد و آسیب پذیر بودن این سازه لزوم مقاومت این سازه در برابر نیروهای اعمالی امری اجتناب ناپذیر است. سدها می بایست در برابر نیروهای اعمالی به آن از جمله نیروهای استاتیکی نظیر زیرفشار، فشار مخزن، و تنش‌های وارده ناشی از بارهای ثقلی و نیروهای دینامیکی نظیر زلزله و سیلاب و … مقاومت کافی داشته باشند. مدل سیستم سد-پی-مخزن با در نظر گرفتن نیروهای وارده همواره توسط محققین زیادی مورد تحلیل و بررسی قرار گرفته است. به‌طوریکه در ابتدا با روش‌های تحلیلی و در نظر گرفتن فرضیات ساده شونده زیاد و سپس با روش های عددی مبادرت به حل مدل سد نمودند. در این فصل در ابتدا نگاهی گذرا به روش های تحلیلی و عددی در حل سیستم سد-پی-مخزن خواهیم داشت. سپس تعریف و تاریخچه و کاربرد روش پس‌تنیدگی در مقاوم‌سازی و بهسازی سدها ارائه می‌گردد و نتایج محققین در این زمینه بیان می‌شود.
2-2- روش‌های تحلیلی
روش‌های تحلیلی اولین روش‌هایی بودند كه محققین برای حل مسئله تحلیل سد و مخزن تحت اثر زلزله بكار بردند. در این نوع روش‌ها، در ابتدا طبق فرضیات مصالح، معادلات حاكم و شرایط مرزی مسئله بیان و سپس مستقیماً معادلات دیفرانسیل مربوطه حل می‌شود.
 
به دلیل پیچیدگی زیاد حل این‌گونه معادلات، برای مسائل با شكل هندسی و یا شرایط مرزی پیچیده، این روش قابل‌استفاده نیست ولی برای مسائل ساده پاسخ‌هایی توسط محققین مختلف به‌دست آمده است.
جواب‌های حاصل از این روش‌ها، به دلیل سهولت در استفاده برای تحلیل تقریبی سدها و طراحی اولیه آنها، ابزاری بسیار مناسب و كاربردی می‌باشند. در ادامه خلاصه‌ای از این روش‌ها ارائه خواهد شد.
2-2-1- تحلیل مدل سد-مخزن بدون در نظر گرفتن اثر اندر کنش
اولین راه ‌حل جهت تحلیل سد تحت اثر زلزله توسط وسترگارد ]40[ در سال 1933 میلادی مطرح گردید. فرضیاتی كه وسترگارد، با توجه به شکل 2-1 در نظر گرفت به شرح زیر می‌باشد:

  • رفتار سیستم دو بعدی است.
  • سد صلب می‌باشد.
  • كف مخزن افقی و صلب می‌باشد.
  • طول مخزن در جهت بالادست تا بی‌نهایت ادامه دارد.
  • سیال غیر چرخشی می‌باشد.
  • دانسیته آب ثابت است.
  • شتاب زمین افقی و هارمونیک برابر می‌باشد كه در آن:

ضریب زلزله و g شتاب ثقل زمین و T زمان تناوب تحریک می‌باشند.

  • تغییر شكل‌ها كوچك در نظر گرفته شده است.
  • آب تراكم پذیر خطی است.
h
y
 
x

10-اثر امواج سطحی در نظر گرفته نمی‌شود.
 
 
 
 
شكل 2-1- مدل سد و مخزن مورد استفاده وسترگارد
از طرفی معادله حاکم بر محیط مخزن را می‌توان بصورت رابطه 2-1 بیان نمود که معادله موج در محیط دو بعدی می‌باشد ]40[.
(2-1)
که در رابطه فوق P فشار هیدرودینامیک و C سرعت انتشار امواج در‌آب می‌باشد.
وسترگارد براساس فرضیات خود شرایط مرزی زیر را برای معادله فوق اعمال نمود:
در y=0

موضوعات: بدون موضوع  لینک ثابت
 [ 07:38:00 ب.ظ ]




Abstract
 
Nowdays, due to the growing constructions in subjects like huge structures , large bridges , railway and monorails etc and the importance of factors such as time and cost ,engineers in such         projects emphasis on zero phase to reduce these factors.
In initial studies of each civil projects one of the important things to determine is subsidence consolidation .otherwise neglecting or inadequate accuracy of the results will cause damage to the project.
This index is determined with the consolidation test. with regard to the nature and the methods of this test , reaching to the favorite result will consume a lot of time and cost to itself. Therefore, in this thesis, by the use of strong and effective methods like ANFIS and NEURAL NETWORK which gives accurate laboratory results and by the use of matlab software tries to obtain a model based on effective parameters to determine the index so that it can be compared with laboratory parameters and other reasercher’s formulas in consolidation parameters.Based on the results of the model it was observed that the error is less than the previous relationships and it better conforms with the actual results and moreover it may consume less time to achieve acceptable results.
 
 
 
 
 
 
 
 
 
فهرست
عنوان                                                                               شماره صفحه
 
فصل اول: كلیات.. 1
1- مقدمه. 2
1-1- تعریف مساله و هدف از پژوهش.. 2
1-2- پدیده تحکیم 2
1-3- منطق فازی.. 3
فصل دوم: مروری بر تحقیقات گذشته. 6
2-1- مقدمه. 7
2-2- شناسایی پارامترهای موثر در نشست تحکیمی خاک.. 7
2-3- مروری بر تاریخچه تحقیقاتی نظریه مجموعه‌های فازی و زمینه‌های آن در مهندسی عمران. 9
2-3-1- اولین زمینه‌های فکری.. 9
2-3-2- دهه 60: ظهور فازی.. 9
2-3-3- دهه 70: تثبیت مفاهیم بنیادی و ظهور اولین کاربردها 10
2-3-4- دهه 90 و سالهای آغازین قرن 21: چالشها کماکان باقیست.. 11
2-3-4- فازی در ایران: 11
2-3-5- نظریه فازی در مهندسی عمران. 12
فصل سوم: تحکیم 13
3- 1 مقدمه. 14
3-2 اصول پایه تحکیم 14
3-2-1 مفاهیم کلی تحکیم یک بعدی.. 14
3-2-2 نظریه تحکیم یک بعدی.. 15
3-2-2-1 محاسبه نشست تحکیم یک بعدی: 16
3-2-2-2 حل معادله تحکیم 18
3-2-2-3 آزمایش تحکیم 19
3-2-2-3-1 آزمایش تحکیم با سرعت تغییر شکل نسبی ثابت.. 20
3-2-2-3-2 آزمایش تحکیم با شیب ثابت.. 21
3-2-2-4 خصوصیات تراکم پذیری.. 23
3-2-2-4-1 اندازه گیری غیر مستقیم شاخص تراکم: 24
3-2-3 نشست تحکیم 25
3-2-4 درجه تحکیم 26
3-2-5 محاسبه ضریب تحکیم با بهره گرفتن از نتایج آزمونها آزمایشگاهی. 27
3-2-5-1 روش لگاریتم زمان. 27
3-2-5-2 روش ریشه دوم زمان. 28
3-2-5-3 روش شیب بیشینه سو. 29
3-2-5-4 روش محاسباتی سیوارام و سوامی. 30
3-2-6 تاثیر دست خوردگی نمونه بر روی منحنی : 30
3-2-7 تحکیم ثانویه. 31
3-2-7-1 تاثیر تحکیم ثانویه بر روی فشار پیش تحکیمی. 33
3-2-8 تحکیم به کمک زهکش‌های ماسه‌ای.. 34
فصل چهارم: منطق فازی و کاربرد آن در مهندسی عمران. 37
4-1- مقدمه. 38
4-2- مجموعه‌های فازی.. 40
4-2-1- تعاریف و مفاهیم اولیه مجموعه‌های فازی.. 40
4-2-2- چند مفهوم مقدماتی. 41
4-2-3- نماد گذاری.. 41
4-2-4- عملگرهای مجموعه ای.. 41
4-3- اصل توسعه و روابط فازی.. 45
4-3-1- اصل توسعه. 45
4-3-2- حاصل ضرب کارتزین فازی.. 46
4-3-3- اصل توسعه بر روی فضای حاصل ضرب کارتزین. 46
4-3-4- رابطه فازی.. 47
4-3-5- ترکیب روابط فازی.. 47
4-3-6- اعدادی فازی.. 47
4-3-7- اعداد فازی L-R.. 48
4-4- منطق فازی.. 50
4-4-1- استدلال فازی.. 50
4-4-2- متغیرهای زبانی. 50
4-4-3- قیود زبانی. 51
4-4-4- قواعد اگر- آنگاه 52
4-4-5- گزاره فازی.. 52
4-4-6- شیوه استدلال فازی.. 53
4-4-7- روش ممدانی. 55
4-4-8 روش استدلال فازی با بهره گرفتن از توابع خطی. 59
4-4-9- استدلال فازی ساده شده 62

پایان نامه

 

4-5- کاربردهای فازی در مهندسی عمران. 62
4-5-1- سیستم‌های فازی.. 62
4-5-2- پایگاه قواعد 63
4-6-3- ویژگی‌های مجموعه قواعد 64
4-5-4- موتور استنتاج فازی.. 64
4-5-5- فازی ساز. 65
4-5-6- غیر فازی ساز: 66
4-5-7- کنترل فازی.. 67
فصل پنجم: آشنایی با مفاهیم شبکه عصبی. 69
5-1 سلول عصبی مصنوعی. 70
5-2 توابع تحریک… 70
5-3 شبکه‌های عصبی چند لایه. 72
5-4 شبکه‌های بازگشتی. 73
5-5 آموزش شبکه. 74
5-6 هدف از آموزش شبکه. 74
5-7 آموزش نظارت شده 74
5-8 آموزش غیر نظارت شده 75
5-9 روش‌های تربیت و آموزش آماری.. 76
5-10 خودسازمانی. 77
5-11 الگوریتم انتشار برگشتی. 78
5-12 ساختار شبکه در الگوریتم انتشار برگشتی. 79
5-13 نگرشی کلی بر آموزش شبکه. 80
5-14 تشخیص تصویر. 80
5-15 حرکت به پیش.. 82
5-16 برگشت به عقب ـ تنظیم وزن‌های لایه خروجی. 82
5-17 تنظیم وزن‌های لایه پنهان. 83
5-18 سلول عصبی بایاس در شبکه. 84
5-19 اندازه حرکت.. 84
5-20 الگوریتم‌های پیشرفته. 85
5-21 کاربردها و اخطارهای انتشار برگشتی. 86
5-22 اندازه گام 87
5-23 ناپایداری موقتی. 87
5-24 مبنای ریاضی الگوریتم انتشار برگشتی. 87
5-26 نحوة ارائه زوج‌های آموزشی به شبکه. 91
5-27 سنجش میزان یادگیری و عملکرد شبکه. 91
5-28 جذر میانگین مربع خطاها 92
5-29 استفاده از دستورات MATLAB.. 93
فصل ششم: برآورد ضریب فشردگی تحکیم به وسیله پارامترهای فیزیکی خاک.. 95
6-1- مقدمه. 96
6-2- شناسایی پارامترهای موثر در نشست تحکیمی خاک.. 97
6-3 بانک اطلاعات مورد استفاده 98
6-4 تحلیل اطلاعات با بهره گرفتن از روش برازش خطی. 99
6-5- نتیجه گیری.. 102
فصل هفتم: مدل سازی ضریب فشردگی با بهره گرفتن از شبکه‌های عصبی-فازی (ANFIS) 104
7-1 آشنایی با مدلسازی توسط ANFIS. 105
7-2 مدلسازی ضریب فشردگی با بهره گرفتن از شبکه عصبی-فازی (ANFIS) 107
7-3 چگونگی مدلسازی وتحلیل مدل و بررسی نتایج. 109
فصل هشتم: نتیجه گیری، پیشنهادات، محدودیت‌ها 120
8-1 نتیجه گیری.. 121
8-2- محدودیت‌ها: 121
8-3- پیشنهاد برای ادامه مطالعه: 122
Reference: 123
 
 
 
 
 
 
 
فهرست جدول ها
جدول                                          صفحه
جدول 2-1 : فرمولهای تجربی برای تعیین . 8
جدول 3-1 طبقه بندی خاکها بر اساس تراکم پذیری ثانویه 33
جدول 4-1 جدول قاعدگی برای رانندگی 59
جدول 6-2 : مشخصات کلی داده‌های اولیه 98
جدول 6-3 : نتایج برازش خطی گام به گام 100
جدول 7-1 : نتایج آزمایشگاهی موجود برای ضریب فشردگی 107
 
 
 
فهرست شکل ها
شکل                                           صفحه
شکل 1 – نمایش یک سیستم فازی 4
شکل 2-1 تعیین ضریت فشردگی 7
شکل 3-1 تغییر فشار آب حفره‌ای و تنش موثر ناشی از اعمال سربار 16
شکل 3-2 محاسبه تحکیم یک بعدی 17
شکل3-3 محاسبه . 18
شکل 3-4 دستگاه تحکیم(ادومتر) 20
شکل 5-3 نمودار شماتیک دستگاه آزمایش تحکیم با سرعت تغییر شکل نسبی کنترل شده 21
شکل 3-6 نمودار شماتیک آزمایش تحکیم با شیب ثابت 22
شکل3-7 مراحل مختلف در آزمایش با شیب کنترل شده 22
شکل 3-8 نشست تحکیم 26
شکل 3-9 روش لگاریتم زمان برای محاسبه . 28
شکل 3-10 روش ریشه دوم زمان برای محاسبه . 29
شکل 3-11 روش شیب بیشینه سو برای محاسبه . 30
شکل 3-12 تاثیر دست خوردگی نمونه بر منحنی ….. 31
شکل 3-13 ضریب تحکیم ثانویه برای خاکهای طبیعی رسوبی 1973 G.Mesri 32
شکل 3-14 تاثیر نسبت افزایش بار یکسان، بر روی ضخامت نمونه 33
شکل 3-15 تاریخچه زمین شناسی 34
شکل 3-17 شالوده انعطاف پذیر(الف) و صلب (ب) واقع بر خاک رس 35
شکل 4-1 مکمل فازی 42
شکل 4-2 اجتماع فازی 43
شکل 4-3 اشتراک فازی 44
شکل 4-4 اعداد مثلثی 49
شکل 4-5 اعداد نرمال 49
شکل 4-6 اعداد سهموی 50
شکل 4-8 توابع عضویت برای رانندگی 58
شکل 4-9 مجموعه‌های فازی برای بخش نتیجه 61
شکل 4-10 ساختار اصلی سیستمهای فازی با فازی ساز و غیر فازی ساز 63
شکل 5-1: شبکه یا یک نود 70
شکل 5-2 : تابع سیگموید 71
شکل 5-3 : تشخیص تصویر 81
شکل 5-4 : سلول عصبی بایاس در شبکه 84
شبکه5-5 : MLP با یک نود 93
شکل 5-6 : شبکه پرسپترون چند لایه MLP با یک لایه مخفی. 94
شکل 6-1: میزان پراکندگی در داده‌های اولیه برای رابطه (9) 100
شکل 6-2 : مناسبترین توابع درجه دو و درجه 3 برای تعیین Cc از روی 101
شکل 6-3 : آزمایش رابطه 6-13 و مقایسه با روابط دیگر محققین 103
شکل 7-1 توابع عضویت ورودی PL 111
شکل 7-2 توابع عضویت ورودی LL 111
شکل 7-3 توابع عضویت ورودی 112
شکل 7-4 : مقایسه نتایج آزمایشگاهی و مدل ANFIS (داده‌های آموزش) 112
شکل 7-5 : مقایسه نتایج آزمایشگاهی و مدل ANFIS (داده‌های تست) 113
شکل 7-6 : مقایسه نتایج آزمایشگاهی و مدل شبکه عصبی (داده‌های آموزش) 118
شکل 7-7 : مقایسه نتایج آزمایشگاهی و مدل شبکه عصبی (داده‌های تست) 118
 
 
 
 
 
 
 
فصل اول:
كلیات
 


 
 
 
1- مقدمه
1-1- تعریف مساله و هدف از پژوهش
راه حل مستقیم برای تعیین پارامترهای نشست تحکیمی خاک، استفاده از آزمایش تحکیم است. مطابق استاندارد انجام آزمایش تحکیم نیاز به صرف حدود یک هفته وقت دارد. دشواری انجام آزمایش تحکیم و بالاخص زمان طولانی و هزینه بالای آن سبب بروز محدودیت‌های فراوان در کیفیت و کمیت آزمایش به ویژه در پروژه‌های حجیم و وقت گیر شده است. در اکثر این پروژه ها به منظور جلو گیری از نیاز به زمان طولانی و همچنین کاهش هزینه‌های انجام مطالعات ژئوتکنیک اغلب تعداد آزمایش ها کاهش داده می‌شود و در نتیجه اطلاعات پیوسته و جامع از خاکها بخصوص در مواردی که تنوع لایه بندی زیاد است، بدست نمی‌آید. این امر سبب می‌شود طراحان بدون داشتن اطلاعات کافی، اقدام به ساده سازی پارامترهای طراحی می‌نمایند که معمولا به صورت دست بالا است و از جهت دیگر سبب افزایش هزینه‌های اجرا می‌شود. بنابراین لازم است معیارهایی مشخص گردند تا بتوان از طریق آنها به دانشی جامع و با خطای قابل قبول پارامترهای تحکیم را تخمین زد. این کار علاوه بر اینکه سبب کاهش حجم آزمایشات و صرفه جویی در زمان و هزینه می‌شود از طرف دیگر می‌تواند اطلاعات پیوسته‌ای از ساختگاه مورد نظر را فراهم سازد و دانش طراحان را به میزان قابل توجهی بهبود بخشد. با توجه به این موارد محققین مختلفی سعی کردند تا با بهره گرفتن از داده‌های آزمایشگاهی فرمول‌های تجربی جهت تعیین پارامترهای تحکیم خاک ارائه دهند. بدین طریق می‌توان بدون انجام آزمایش تحکیم اقدام به تخمین نتایج حاصل از آن نمود. در این پژوهش پس از بررسی روابط ارائه شده توسط سایر محققین جهت تخمین نشست تحکیمی، با بهره گرفتن از اطلاعات تفصیلی بدست آمده از چهارده پروژه بزرگ ایران و با بهره گرفتن از شبکه‌های عصبی- فازی (ANFIS) مدلی با دقت بالا جهت تعیین نشست تحکیمی خاک ارائه می‌شود.
 
1-2- پدیده تحکیم
فشردگی یا تراکم خاک در اثر تاثیر سربار (وزن سازه) باعث نشست سازه واقع بر روی آن می‌شود که به این پدیده نشست خاک می‌گویند. که در حالت کلی نشست خاک به دو گروه زیر تقسیم می‌شوند:
الف) نشست آنی (Immediate Settlement) که ناشی از تغییر شکل الاستیک خاک خشک و یا خاکهای مرطوب و اشباع بدون تغییری در میزان آب می‌باشد و در تمام خاکها مورد توجه است.
ب) نشست تحکیمی (Consolidation Settlement) که ناشی از تغییر حجم خاک اشباع به علت رانده شدن آبهای موجود در حفرات است و در خاکهای ریز دانه مانند رس مورد توجه قرار می‌گیرد.
وقتی خاک اشباع تحت بارگذاری قرار می‌گیرد، در آغاز تمام بار گذاری توسط آب حفره‌ای تحمل می‌شود و به آن افزایش فشار آب حفره‌ای می‌گویند. در صورتی که زهکشی انجام شود، به مزور زمان حجم خاک کاهش می‌یابد که به آن تحکیم گفته می‌شود و باعث نشست می‌گردد. از طرفی ممکن است خاک در اثر جذب آب حفره‌ای یا فشار آب حفره‌ای منفی افزایش حجم دهد که به آن تورم می‌گویند.
نرخ تغییر حجم تحت بار گذاری به نفوذ پذیری نمونه بستگی دارد، از این رو آزمایش تحکیم معمولا در خاک‌های با نفوذ پذیری کم (مانند رس) انجام می‌گیرد. هدف از انجام آزمایش تحکیم، تعیین پارامترهای موثر در پیش بینی شدت نشست و میزان آن در سازه‌های متکی بر خاک‌های رسی است. آزمایش تحکیم در واقع آزمایش جهت بر آورد پارامترهای تحکیم یک بعدی ترزاقی است که از حل همزمان دو معادله تعادل و پیوستگی به صورت تک بعدی حاصل شده است.
نمونه گیری از خاک با حفظ شرایط واقعی کار بسیار مشکلی است. تفاوت قابل توجه در میزان رطوبت، حد روانی و شاخص پلاستیسیته و فشار همه جانبه نمونه‌های تهیه شده از اعماق مختلف و حتی از یک عمق خاص، بیانگر تفاوت و رفتار در نمونه‌های تهیه شده از یک نوع خاک می‌شود و این مسئله علاوه بر افزایش هزینه انجام آزمایشات سبب پیچیدگی و وارد نمودن قضاوت مهندسی در پروژه‌های مهندسی ژئوتکنیک می‌گردد. داده‌های آزمایشگاهی زیادی موجود هستند که در پروژه‌های معینی به کار رفته و عملا بعد از مدتی فراموش شده اند. این اطلاعات قدیمی می‌توانند بعنوان یک بانک اطلاعاتی مفید در ارزیابی پارامترهای ژئوتکنیکی بکار گرفته شوند[1].
 
1-3- منطق فازی
در دهه 1960، پروفسور لطفی زاده در دانشگاه برکلی کالیفرنیا، مقاله‌ای را با این مضمون که ابهامات یک وضعیت نامعلوم ولی متفاوت از پدیده‌های تصادفی هستند، ارائه داد. برای مثال نمی‌توان مردم را به دو گروه خوب و بد تقسیم کرد. یا دسته بندی پارامترهایی چون دما، فشار، اندازه و… در دو گروه صفر و یک ممکن نیست. برای توصیف چنین پارامتنرهایی درجه‌ای به آنها تعلق می‌گیرد که این درجه ها بر اساس چندین فاکتور مانند موقعیت، آزمایش و .. است. این ایده اساس مجموعه‌های فازی نسبت به منطق کلاسیک است. در مجموعه کلاسیک یک شئ به مجموعه تعلق دارد یا ندارد ولی در مجموعه فازی درجه‌هایی از تعلق به یک مجموعه معرفی می‌شوند. یک مجموعه فازی تابع تعلقی دارد که در درجه‌های مختلفی از تعلق برای عناصر مشخص در آن تعریف می‌شود. تابع تعلق به صورت مقادیر گسسته یا به وسیله منحنی‌هایی تعریف می‌گردد. روش های متعددی برای توصیف یک مجموعه فازی موجود دارد [2].
پروسه فازی سازی (fuzzification) مجموعه‌ای کلاسیک را به یک مجموعه تقریب زننده که فازی است تبدیل می‌کند [3]. از آنجاییکه هر عضو و درجه تعلق آن مستقل از عضو دیگر و درجه تعلق مربوط به آن است، پروسه خطی است و اصل جمع آثار در آن صدق می‌کند، یعنی هر عضو به تنهایی فازی می‌گردد [4].
منطق فازی بر اساس مفهوم مجموعه‌های فازی است و هر مقدار درستی در بازه را می‌پذیرد. از مفاهیم مجموعه‌های فازی در جبر فازی استفاده می‌شود.
به منظور طراحی یک سیستم کنترل منطق فازی باید قادر به توصیف عملیات زبانی باشد. به بیان دیگر مراحل زیر باید انجام شود[4]:

  • مشخص نمودن ورودی ها و خروجی ها با بهره گرفتن از متغیرهای زبانی
  • نسبت دادن توابع تعلق به متغیرها
  • ایجاد قواعد پایه (اساسی)
  • غیر فازی سازی (Defuzzification)

متغیرهای زبانی، توابع تعلق و قواعد پایه از تجربیات یک اپراتور ماهر بدست می‌آیند. قواعد پایه زیاد، معمولا منجر به عملکرد بهتری می‌شوند. سیستم‌های فازی “سیستم‌های مبتنی بر دانش یا قواعد” هستند. قلب یک سیستم فازی یک پایگاه دانش بوده که از قواعد اگر – آنگاه فازی تشکیل شده است. منظور از سیستم فازی در مهندسی سیستم فازی با فازی ساز (Fuzzifier) و غیر فازی ساز (Defuzzifier) است، شکل (1) [5].
 
شکل 1 – نمایش یک سیستم فازی
در یک سیستم غیر فازی، تنها یک قاعده در یک زمان خاص وجود دارد ولی در سیستم فازی ممکن است در همان زمان خاص بیش از یک قاعده ولی با قوتهای متفاوت وجود داشته باشد. این قواعد با قوتهای متفاوت منجر به عملیات کلاسیک در خلال پروسه غیر فازی سازی می‌شوند [2]. پروسه‌های غیر فازی سازی در سیستم‌های کنترل فازی استاندارد نیستند. از چندین روش برای این کار می‌توان استفاده کرد. مانند:

  • عملیات max-min(and-ro)
  • روش مرکز ثقل (center of gravity) یا COG

و روش های متنوع دیگر.
اساسا اگر چه سیستم‌های فازی پدیده‌های غیر قطعی و نامشخص را توصیف می‌کنند، با این حال خود تئوری فازی یک تئوری دقیق می‌باشد. دو توجیه برای تئوری سیستم‌های فازی وجود دارد:

  • پیچیدگی بیش از حد دنیای واقعی که منجر به توصیفی تقریبی یا فازی برای مدل کردن یک سیستم می‌شود.
  • نیاز به فرضیه‌ای برای فرموله کردن دانش بشری به شکلی سیستماتیک و قرار دادن آن در سیستم‌های مهندسی توجیه دوم وجود تئوری سیستم‌های فازی را به عنوان یک شاخه مستقل در علوم مهندسی توجیه می‌کند[5].

این پایان نامه شامل فصول زیر می‌باشد:
فصل اول مقدمه
فصل دوم مروری بر تحقیقات گذشته
فصل سوم تحکیم
فصل چهارم منطق فازی و کاربرد آن در مهندسی عمران
فصل پنجم برآورد ضریب فشردگی تحکیم به وسیله پارامترهای فیزیکی خاک
فصل ششم آشنایی با شبکه مفاهیم شبکه عصبی
فصل هفتم مدل سازی ضریب فشردگی با بهره گرفتن از شبکه‌های عصبی-فازی (ANFIS)
فصل هشتم نتیجه گیری و جمع بندی و پیشنهادات
 
 
 
 
 
 
 
فصل دوم:
مروری بر تحقیقات گذشته
 
 
 
 
 
 
2-1- مقدمه
نشست تحکیمی یکی از ملاحظات مهم طراحی در پروژه‌های عمرانی همچون سازه ها، راه ها و راه آهن می‌باشد. این پارامتر بوسیله آزمایش تحکیم تعیین می‌شود. آزمایش تحکیم یک آزمایش نسبتا وقت گیر و پر هزینه است که باید با دقت کافی انجام می‌شود.
در بسیاری از پروژه ها به خصوص در پروژ ه‌های خطی مانند راه آهن خوددارای از انجام آزمایش تحکیم به تعداد و دقت کافی سبب وارد آمدن خسارات قابل توجه به حجم راه می‌شود. با توجه به زمان و هزینه نسبتا زیاد آزمایش تحکیم، تخمین نشت تحکیمی با بهره گرفتن از پارامترهای موثری که بتوان زیاد آزمایش تحکیم، تخمین نشست تحکیمی با بهره گرفتن از پارامترهای موثری که بتوان آنها را با انجام آزمایشات ساده کم هزینه و با دقت قبول نمود همواره مورد توجه بسیاری از محققین ژئوتکنیک و راه سازی بوده است.
 
2-2- شناسایی پارامترهای موثر در نشست تحکیمی خاک
با انجام آزمایش تحکیم، ضریب فشردگی یا شاخص تراکم (Compression index) از شیب نمودار تخلخل (e) بر حسب لگاریتم تنش موثر ( ) برای خاکهای تحکیم عادی یافته تعیین می‌شود. شکل 1 نحوه تعیین ضریب فشردگی ( ) را نشان می‌دهد.
همانطور که در این شکل مشاهده می‌شود، به طور مستقیم از رابطه زیر قابل تعیین است:
(2-1)
 
شکل 2-1 تعیین ضریت فشردگی
به طور غیر مستقیم و از روی پارامترهای موثر، اولین بار ترزاقی و پک در سال 1997، رابطه تجربی زیر را به منظور تخمین ضریب فشردگی برای رسهای تحکیم عادی یافته در حالت دست نخورده پیشنهاد نمود[6]
(2-2)
که در آن LL، حد روانی (Liquid Limit) خاک رس است. همچنین ترزاقی و پک در رابطه‌ای مشابه، فرمول زیر را برای رس‌های دست نخورده (Remolded clays) ارائه دادند:
(2-3)
در هر دو رابطه (2) و (3)، LL به عنوان تنها پارامتر موثر در تعیین نشست تحکیمی معرفی شده است.
همچنین آزور و همکارانش با بهره گرفتن از رگرسیون تک متغیره خطی، برای مناطق مختلف روابط زیر را ارائه نمودند [7]:
(2-4)                        : برای رس برزیلی
(2-5)                              : برای رس شیکاگو
(2-6)                            : برای خاکهای آلی و نباتی
در این رابطه LL (حد روانی)، ( در صد تخلخل اولیه) و (رطوبت طبیعی خاک) به عنوان پارامترهای موثر در نظر گرفته شده هر یک از این پارامترها به طور جداگانه برای تخمین نشست استفاده شده اند.
نانسی و همکارانش با انجام مطالعه در خاکهای آتلانتیک شمالی، رابطه (2-7) را پیشنهاد دادند[8]
(2-7)
در این رابطه PI (نشانه خمیری) خاک، پارامتر تاثیر گذار بیان شده است. از آنجایی که :
(2-8)
با توجه به اینکه اثر LL در مطالعات قبلی در نظر گرفته شده بودن پس PL بعنوان پارامتر موثر دیگر توسط این محققین در نظر گرفته شده است.
به طور مشابه چندین رابطه دیگر و نیز محققین مختلف برای تخمین بر اساس پارامترهای معرفی شده پیشنهاد شده است. این روابط در جدول 2-1 درج شده است [9]، [10].
جدول 2-1 : فرمولهای تجربی برای تعیین

 

 

 

 

 

 

 
 
 
موضوعات: بدون موضوع  لینک ثابت
 [ 07:38:00 ب.ظ ]