کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



آخرین مطالب


جستجو


 



اﻧﺘﻘﺎل رﺳﻮب و رﺳﻮبﮔﺬاری، ﭘـﻲآﻣـﺪﻫﺎﻳﻲ ﭼـﻮن اﻳﺠـﺎد ﺟﺰاﻳـﺮ رﺳـﻮﺑﻲ در ﻣـﺴﻴﺮ رودﺧﺎﻧﻪ و در ﻧﺘﻴﺠﻪ ﻛﺎﻫﺶ ﻇﺮﻓﻴﺖ اﻧﺘﻘﺎل ﺟﺮﻳﺎنﻫﺎی ﺳﻴﻼﺑﻲ، ﺧﻮردﮔﻲ ﺗﺄﺳﻴﺴﺎت ﺳـﺎزهﻫـﺎی رودﺧﺎﻧـﻪای و ﻣﺸﻜﻼت دﻳﮕﺮ را درﺑﺮ دارد. همچنین رسوبات معلق کیفیت آب را برای مصارف بشری تحت تأثیر قرار می­دهد. ﺑﻨـﺎﺑﺮاﻳﻦ، در ﻫﻴـﺪروﻟﻴﻚ رودﺧﺎﻧـﻪ و ژﺋﻮﻣﻮرﻓﻮﻟﻮژی آن، ﺑﺮرﺳﻲ ﻇﺮﻓﻴﺖ ﺣﻤﻞ رﺳﻮب ﺟﺮﻳﺎن و ﻣﻜﺎﻧﻴﺴﻢ اﻧﺘﻘﺎل رﺳـﻮب از اﻫﻤﻴـﺖ وﻳـﮋه­ای ﺑﺮﺧﻮردار اﺳﺖ. رویکردهای متداول اغلب بر پایه فرضیات ایده­آل بوده و قادر به ارائه نتایج قابل قبولی از برآورد نرخ انتقال رسوبات بستر نیستند. در این پایان نامه کوشش بر این است که یک روش جامع و دقیق را با بهره­ گیری از دانش هوش مصنوعی بر روی مسائل پیش ­بینی و برآورد رسوب پیاده کرد. از دو روش به نام­های حداقل مربعات رگرسیون بردار پشتیبان و الگوریتم بهینه­سازی اجتماع ذرات بهره جسته تا بتوان نرخ انتقال رسوبات بستر در آبراهه­ ها را با دقت به مراتب بالاتری نسبت به روش­های متداولی از قبیل روش ایکرز و وایت، انجلاند و هانزن، گراف و یانگ تخمین زد. رویکرد ماشین بردار پشتیبان بر مبنای تئوری بهینه­سازی مقید بوده و از اصل کمینه­سازی خطای ساختاری استفاده کرده كه منجر به یک جواب بهینه کلی می­گردد. الگوریتم بهینه­سازی اجتماع ذرات در مقوله روش­های فراکاوشی جای داشته و از نظم موجود در رفتار جمعی پرندگان جهت جست­وجوی غذا ایده گرفته شده است. نتایج حاصل از پیاده­سازی مدل حداقل مربعات رگرسیون بردار پشتیبان بر روی مجموعه­­ای از داده ­های آزمایشگاهی و میدانی در مقایسه با رویکردهای متداول به مراتب بهتر بوده است. سپس جهت بهبود بهتر مدل، متغیرهای ورودی به صورت لگاریتمی مقیاس شدند و از بروز مقادیر غلظت منفی در مدل جلوگیری به عمل آمد و نتایج نیز نسبتاً مورد بهبود واقع شدند. نتایج حاصل از الگوریتم بهینه­سازی اجتماع ذرات به نسبت رویکردهای متداول رضایت ­بخش بوده ولی عملکرد مدل حداقل مربعات ماشین بردار پشتیبان رضایت بخش­تر است و رگرسیون بردار پشتیبان می ­تواند یک روش جامع و دقیق را در جهت شبیه­سازی نرخ انتقال رسوبات بستر ارائه دهد.

فهرست مطالب

فهرست مطالب. ‌ه
فهرست تصاویر. ‌ز
فهرست جداول. ‌ی
1-مقـدمـه…………………………………………………………………………… …………………………………………………………………………… 1
1-1-طرح مسأله. 1
1-2-ضرورت انجام تحقیق. 2
1-3-اهداف پژوهش. 4
2- مبانی نظری تحقیق……………………….. ………………………………………………………. 7
2-1- کلیات…………………………….. ………………………………………………………………….. 7
2-2-رویکرد انشتین. 8
2-3-رویکرد اَیکرز و وایت……………….. ………………………………………. 11
2-4-رویکرد اِنجلاند و هانزن………………..     12
2-5-رویکرد گراف. 14
2-6-رویکرد یانگ…………………………     14
بر تحقیقات انجام شده……………… …………………………………. 17
3-1-تحقیقات انجام گرفته در زمینه مباحث پیش‌بینی سیل  17
3-2-تحقیقات صورت گرفته در زمینه برآورد رسوب . 24
4-مواد و روشها…………………………… ………………………………………………………………. 26
4-1-تخمین. 26
4-2-یادگیری ماشین. 28
4-3-ماشین­های بردار پشتیبان (SVM). 29
4-3-1-طبقه ­بندی ماشین بردار پشتیبان. 30
4-3-1-1- دسته‌بندی خطی داده‌های دارای نویز          …………………………………………………….33
4-3-1-2- حالتی که داده‌ها به صورت خطی جدا نشوند ……………………………………….35
4-3-1-2-1- نگاشت الگوها به فضای ویژگی …………………………………………………….36
4-3-1-2-2- توابع کرنل رایج …………………………………………………………………………….42
4-3-2-رگرسیون بردار پشتیبان (SVR). 43
4-3-2-1- رگرسیون‌گیری خطی ……………………………………………………………………………44
4-3-2-2- رگرسیون‌گیری غیرخطی ……………………………………………………………………..47
4-3-3- حداقل مربعات ماشین بردار پشتیبان… ……. 52
4-4-الگوریتم جامعه پرندگان. 53
4-4-1-مراحل الگوریتم جامعه پرندگان. 57
4-4-2-کاربرد الگوریتم جامعه پرندگان. 58
4-4-3-مزایای الگوریتم جامعه ذرات. 58
4-4-4-معایب الگوریتم جامعه پرندگان. 59
4-5- داده ­های مورد استفاده……………… ………………………………….. 59
4-6-تحلیل ابعادی. 63
4-7-نرم­افزار و کدنویسی. 65
5-بحث و نتایج. 68
5-1-رویکرد نخست، حداقل مربعات ماشین بردار پشتیبان  68
5-2-رویکرد ثانویه، الگوریتم بهینه­سازی اجتماع ذرات (PSO)  85
5-3-تحلیل حساسیت. 90
6-نتیجه ­گیری و پیشنهادها…………………… …………………………………………….. 95
6-1-نتیجه ­گیری. 95
6-2-پیشنهادها. 97
7-فهرست مراجع……………………………. …………………………………………………………………. 98
 
 
 
 

فهرست تصاویر

شکل 1-1: چهارچوب تحقیق. 6
شکل ‏2‑1: تابع برحسب برای مقادیر مختلف z. 9
شکل ‏2‑2: تابع برحسب برای مقادیر مختلف z. 10
شکل ‏2‑3: ضریب تصحیح در توزیع لگاریتمی سرعت. 11
شکل ‏2‑4: معادلات متداول انتقال رسوب و رویکردهای مربوط به آنها  16
شکل ‏4‑1: نمایشی از شرایط بیش­برازش در مدل­سازی. 27
شکل ‏4‑2: دسته­بندی­های مختلفی که سه داده می­توانند با هم داشته باشند. 27
شکل ‏4‑3: نمایشی از طبقه ­بندی داده ­ها به دو دسته و حاشیه­ اطمینانی که داده ­های دو دسته با هم دارند. 31
شکل ‏4‑4: نمونه ­ای از خطای طبقه ­بندی. 34
شکل ‏4‑5: نگاشت الگوها به فضای ویژگی، در شرایطی که داده ­ها به طور خطی از هم جدا نشوند. 36
شکل ‏4‑6: خلاصه­ای تصویری، از نحوه­ نگاشت الگوها و ساخت تابع دسته­بندی. 37
شکل ‏4‑7: نحوه قرارگیری داده ­های جدول (4-1) بر روی محور مختصات  39
شکل ‏4‑8: صفحه­ای که داده ­های نگاشت یافته بر روی آن قرار می­گیرند  40
شکل ‏4‑9: چگونگی قرارگیری داده ­ها پس از نگاشت آنها. 40
شکل ‏4‑10: طبقه ­بندی داده ­ها با بهره گرفتن از یک جداساز خطی، در دو دسته در فضای ویژگی. 41
شکل ‏4‑11: مرز تصمیم دو دسته پس از نگاشت آنها. 42
شکل ‏4‑12:نمودار تابع حساسیت واپنیک و جزئیات آن. 45
شکل ‏4‑13: کلیه توابع ارزش مورد استفاده در مدل ماشین بردار پشتیبان، که به ترتیب عبارتند از: (a) تابع درجه دو (b) تابع لاپلاس © تابع هابر و (d) تابع حساسیت. 49

مقالات و پایان نامه ارشد

 

شکل ‏4‑14: مدل­های SVR برای داده ­های جدول (4-2) ، با : (a) کرنل چند جمله‌ای از درجه 10 ; (b) کرنل spline.. 50
شکل ‏4‑15: مدل­های SVR با تابع هسته B spline از درجه 1 برای مجموعه داده ­های جدول (4-2) با C=100: (a) ; (b) . 51
شکل ‏4‑16: مدل­های SVR با تابع هسته B spline از درجه 1، برای مجموعه داده ­های جدول (4-2): (a) و C=100 ; (b) و C=10  51
شکل ‏4‑17: مدل­های SVR با تابع هسته B spline از درجه 1 برای مجموعه داده ­های جدول (4-2): (a) و C=1 ; (b) و C=0.1  52
شکل ‏4‑18: مفهوم اصلاح نقطه جست­وجو توسط الگوریتم PSO   56
شکل ‏4‑19: چگونگی حرکت یک ذره در فضای جست­وجو و تأثیر بهترین ذره روی سایر ذرات. 57
شکل ‏4‑20: مقادیر برآورد شده تنش برشی بستر و تنش برشی بحرانی  63
شکل ‏5‑1: فلوچارت مدل ترکیبی الگوریتم PSO و LSSVM.. 69
شکل ‏5‑2: همگرایی پارامتر تنظیم ( ). 70
شکل ‏5‑3: همگرایی پارامتر مربوط به تابع کرنل RBF ( )  70
شکل ‏5‑4: هیستوگرام خطای آزمون مدل نخست LSSVM.. 71
شکل ‏5‑5: نمودار پراکندگی داده ­های آموزشی (مدل نخست LSSVM)  71
شکل ‏5‑6: نمودار پراکندگی داده ­های آزمون (مدل نخست LSSVM)  72
شکل ‏5‑7: نمودار پراکندگی کل داده ­ها (مدل نخست LSSVM)  72
شکل ‏5‑8: مقایسه مدل اولیه حداقل مربعات ماشین بردار پشتیبان با روش­های متداول. 75
شکل ‏5‑9: مقایسه مدل ثانویه LSSVR با مدل نهایی (مقیاس لگاریتمی)  77
شکل ‏5‑10: هیستوگرام خطای داده ­ها در مدل ثانویه LSSVM.. 82
شکل ‏5‑11: هیستوگرام خطای داده ­ها در مدل نهایی LSSVM.. 82
شکل ‏5‑12: هیستوگرام خطای داده ­ها در روش انجلاند و هانزن  83
شکل ‏5‑13: هیستوگرام خطای داده ­ها براساس روش یانگ. 83
شکل ‏5‑14: نمودار پراکندگی داده ­های آموزشی. 88
شکل ‏5‑15: نمودار پراکندگی داده ­های آزمون. 89
 
 
 
 

فهرست جداول

جدول ‏4‑1: نمونه ­ای از نگاشت الگوها به فضای ویژگی. 38
جدول ‏4‑2: : مثالی از داده ­ها برای رگرسیون­گیری آنها به وسیله SVR   49
جدول ‏4‑3: منابع مربوط به داده ­های مورد استفاده و نحوه تقسیم آنها به سه بخش. 61
جدول ‏4‑4: میانگین و انحراف معیار پارامترهای ورودی  65
جدول ‏5-1: مقایسه رویکرد نخست (LSSVR) با رویکردهای متداول از طریق شاخص ­های آماری. 84
جدول ‏5‑2: مقادیر واسنجی شده پارامترهای مربوط به الگوریتم بهینه­یابی اجتماع ذرات. 87
جدول ‏5‑3: سایر معلومات الگوریتم پرندگان. 87
جدول ‏5‑4: مقادیر همگرا شده ضرایب مربوط به معادله پیشنهادی برآورد کل رسوبات کف. 88
جدول ‏5‑5: نتایج حاصل از الگوریتم اجتماع ذرات از نگاه آماری  89
جدول ‏5‑6: نتایج حاصل از تحلیل حساسیت مدل LSSVM.. 92
جدول ‏5‑7: همبستگی متغیرهای ورودی به یکدیگر و اثر حذف آنها بر روی مدل. 94
 
 
 
 
 
 
 
 
 
 
 
 

1-  مقـدمـه

 

1-1-      طرح مسأله

توسعه اقتصادی و مدنی یک جامعه تا حد زیادی متناسب با توانایی بیشینه کردن منافع و کمینه کردن زیان ناشی از رودخانه­ها است. رودﺧﺎﻧـﻪﻫـﺎ ﻫﻤﻮاره ﺑﺎ ﭘﺪﻳﺪهﻫﺎی ﻓﺮﺳﺎﻳﺶ و اﻧﺘﻘﺎل رﺳﻮب ﻣﻮاﺟـﻪ ﻣـﻲﺑﺎﺷـﻨﺪ و سطح مقطع، پروفیل طولی، جهت و الگوی جریان خود را از طریق فرایندهای انتقال رسوب، آب­شستگی و رسوب­گذاری تنظیم می­ کنند. برای توسعه پایدارِ اقتصادی و فرهنگی در طول رودخانه، لازم است که اصول پایه­ای انتقال رسوب و برآورد آن فهمیده شود. این اصول می­توانند برای حل مسائل زیست­محیطی و مهندسی در رابطه با حوادث طبیعی و فعالیت­های بشری به کار برده شوند. در فعالیت­های بشری من جمله؛ کشاورزی، دامداری، توسعه صنایع و توسعه شهری ونیز معادن، وضعیت طبیعی خاک و نباتات به طرز چشم­گیری دست­خوش تغییرات شده و بدون اعمال کنترل دقیق معمولاً منجر به فرسایش غیر طبیعی خاک می­گردد. ﺑﻨـﺎﺑﺮاﻳﻦ، در ﻫﻴـﺪروﻟﻴﻚ رودﺧﺎﻧـﻪ و ژﺋﻮﻣﻮرﻓﻮﻟﻮژی آن، ﺑﺮرﺳﻲ ﻇﺮﻓﻴﺖ ﺣﻤﻞ رﺳﻮب ﺟﺮﻳﺎن و ﻣﻜﺎﻧﻴﺴﻢ اﻧﺘﻘﺎل رﺳـﻮب از اﻫﻤﻴـﺖ وﻳـﮋه­ای ﺑﺮﺧﻮردار اﺳﺖ.
علم انتقال رسوب به رابطه متقابل بین جریان آب و ذرات رسوب می ­پردازد. اﻧﺘﻘﺎل رﺳﻮب و رﺳﻮبﮔﺬاری، ﭘـﻲآﻣـﺪﻫﺎﻳﻲ ﭼـﻮن اﻳﺠـﺎد ﺟﺰاﻳـﺮ رﺳـﻮﺑﻲ در ﻣـﺴﻴﺮ رودﺧﺎﻧﻪ و در ﻧﺘﻴﺠﻪ ﻛﺎﻫﺶ ﻇﺮﻓﻴﺖ اﻧﺘﻘﺎل ﺟﺮﻳﺎنﻫﺎی ﺳﻴﻼﺑﻲ، ﻛﺎﻫﺶ ﻋﻤﺮ ﻣﻔﻴﺪ ﺳﺪﻫﺎ و ﻇﺮﻓﻴﺖ ذﺧﻴﺮه ﻣﺨﺎزن، ﺧﻮردﮔﻲ ﺗﺄﺳﻴﺴﺎت ﺳـﺎزهﻫـﺎی رودﺧﺎﻧـﻪای و وارد ﺷـﺪن ﺧـﺴﺎرات ﺑـﻪ اﺑﻨﻴـﻪ آﺑـﻲ و ﻣـﺰارع، رﺳﻮبﮔﺬاری در ﻛﻒ ﻛﺎﻧﺎل و ﺑﺴﻴﺎری ﻣﺴﺎئل و ﻣﺸﻜﻼت دﻳﮕﺮ را درﺑﺮ دارد. از طرفی رسوبات معلق کیفیت آب را برای مصارف بشری تحت تأثیر قرار می­دهد. مواد معلق معدنی و آلی نه تنها فاکتور اصلی در آلودگی آب هستند بلکه به عنوان عامل منتقل کننده سایر آلودگی­ها از قبیل؛ سموم کشاورزی و یا میکروب­های مضر عمل می­ کنند. ﻫﻤﭽﻨـﻴﻦ ﺑـﺎ ﺗﻮﺟـﻪ ﺑـﻪ ﻟﺰوم اﻃﻼع از ﻣﻴﺰان رﺳﻮﺑﺎت ﺣﻤﻞ ﺷﺪه ﺗﻮﺳﻂ ﺟﺮﻳﺎن رودﺧﺎﻧـﻪ در ﻃﺮاﺣـﻲ ﺳـﺎزهﻫـﺎی رودﺧﺎﻧـﻪای، ﺿﺮورت ﺑﺮآورد ﺑﺎر رﺳﻮب رودﺧﺎﻧﻪﻫﺎ ﺑﻪروﺷﻨﻲ ﺗﺒﻴﻴﻦ ﻣﻲﺷﻮد. حرکت رسوب در رودخانه­ها به دلیل اهمیت آن برای فهم هیدرولیک رودخانه، مهندسی رودخانه، مورفولوژی رودخانه و مباحثی از این قبیل توسط مهندسین هیدرولیک و نیز زمین­شناسان مطالعه شده است. انتقال رسوب مسأله­ای پیچیده بوده و اغلب دارای روابطی تجربی یا نیمه­تجربی هستند. اکثر روابط تئوری بر پایه فرضیات ایده­آل و ساده شده­ای هستند به طوری که بتوان نرخ انتقال رسوب را به وسیله یک یا دو فاکتور غالب از قبیل دبی آب، متوسط سرعت جریان، شیب انرژی و تنش برشی تعیین کرد. از رویکردهای مختلفی برای حل مسائل مهندسی استفاده شده است و روابط عددی متنوعی نیز منتشر شده است. نتایج بدست آمده از رویکردهای مختلف اغلب تفاوت شدیدی با یکدیگر و با مشاهدات میدانی دارند. بالنتیجه هیچ یک از روابط انتقال رسوب سنتی به دلیل عدم ارائه یک رویکرد فراگیر و مدنظر قرار ندادن کلیه متغیرهای مؤثر در محاسبات دبی رسوب، برآورد رسوب با دقت بسیار پایینی صورت می­گیرد.
در تحقیق حاضر از روش­های هوش مصنوعی برای برآورد مقدار کل بار رسوبی کف بر اساس متغیرهای هندسی جریان و رسوب و نیز متغیرهای هیدرولیکی جریان استفاده می­ شود که در واقع می­توان گفت اکثر متغیرهای مؤثر در فرسایش و انتقال رسوب به عنوان ورودی به مدل داده شده و نتایج حاصله از این روش با نتایج بدست آمده از روش­های سنتی مقایسه می­ شود.
 

1-2-      ضرورت انجام تحقیق

با توجه به مطالعات بسیاری که در زمینه مسائل انتقال رسوب انجام گرفته است، بعضی از آن­ها نیازمند تحلیل­های تئوری و تعدادی بر پایه روش­های تجربی بوده و در بسیاری از موارد ترکیبی از رویکردهای تئوری و تجربی مورد نیاز است. اکثر روش­های تئوری بر اساس بعضی از فرضیات ایده­آل و ساده شده هستند به طوری که نرخ انتقال رسوب براساس یک یا دو فاکتور غالب از جمله؛ دبی جریان، متوسط سرعت جریان، شیب انرژی و یا تنش برشی تعیین می­ شود. معادلات بسیاری منتشر شده است. هر کدام از این روابط توسط داده ­های آزمایشگاهی محدود و در بعضی از موارد براساس داده ­های میدانی به دست آمده­اند. نتایج به دست آمده از روابط مختلف اغلب با یکدیگر و با مقادیر مشاهداتی اختلاف فاحشی دارند. بالنتیجه هیچ کدام از روابط انتقال رسوب مقبولیت عام را، به خصوص در رودخانه­ها، در پیش ­بینی نرخ انتقال رسوب نداشته و تنها در شرایط خاص جواب قابل قبولی را ارائه می­دهند. اگر بخواهیم به طور خلاصه روابط مهم انتقال رسوب را بیان کنیم، به غیر از رویکردهای احتمالاتی و رگرسیونی، می­توان آن­ها را، با فرض این­که نرخ یا غلظت انتقال رسوب می ­تواند از طریق یک متغیر غالب تعیین شود، به صورت یکی از فرم­های زیر بیان نمود:
(‏1‑1)
(‏1‑2)
(‏1‑3)
(‏1‑4)
(‏1‑5)
(‏1‑6)
که ، ، ، ، ، و به ترتیب دبی رسوب بر واحد عرض کانال، دبی جریان، متوسط سرعت جریان، شیب سطح آب یا انرژی، تنش برشی، توان جریان بر واحد سطح کف، و توان واحد جریان بوده و و نیز پارامترهای مربوط به شرایط جریان و رسوب هستند. زیروند c نیز بیان­گر شرایط بحرانی در آستانه حرکت می­باشد. بسیاری از جنبه­ های پیچیده انتقال رسوب نیازمند فهم درست بوده و موضوعی چالش برانگیز برای مطالعات آینده خواهد بود.
 

1-3-      اهداف پژوهش

در این تحقیق، کوشش بر این است که یک روش جامع و دقیق را که بر پایه دانش هوش مصنوعی است بر روی مسائل پیش ­بینی و برآورد رسوب پیاده کرد. مسأله انتقال رسوب در طول چند قرن است که توسط مهندسین و مورفولوژیست­های رودخانه مطالعه می­ شود. از رویکردهای مختلفی برای حل مسائل مهندسی استفاده شده است. نتایجی که از این رویکردها حاصل می­شوند، به طور فاحشی با یکدیگر و با نتایج میدانی متفاوت هستند. در سال­های اخیر، تعدادی از مفاهیم پایه­ای، محدودیت کاربرد و رابطه متقابل بین آن­ها برای ما روشن شده است.
با توجه به این­که انتقال رسوب پدیده­ای پیچیده بوده و اندازه ذرات رسوب دارای محدوده وسیع و از طرفی بستر کانال فرم­های گوناگونی را به خود می­گیرد، استفاده از روش­های داده­محور برای این­گونه از مسائل قطعاً جواب بهتری خواهد داد. در این روش اکثر پارامترهای مؤثر در نرخ انتقال رسوب در مسأله نقش داشته و مسأله حاضر فقط بر پایه یک متغیر یا فاکتور غالب نیست. در این تحقیق کوشش بر این است تا نتایج به دست آمده از رگرسیون بردار پشتیبان را با روش­های سنتی مقایسه کرده و به یک نتیجه ­گیری کلی رسید. در روش رگرسیون بردار پشتیبان، پارامترهای کالیبره به سختی کالیبره می­شوند. برای همین از یک الگوریتم بهینه­سازی به نام الگوریتم اجتماع ذرات استفاده کرده تا از این طریق واسنجی پارامترها به سادگی صورت گیرد. در حین انجام این تحقیق نیز بر روی پارامترهای ورودی تحلیل حساسیت انجام داده و پارامترهای مهم به ترتیب معرفی خواهند شد. این روش از محدوده وسیعی از داده ­های آزمایش­گاهی و میدانی استفاده کرده و برای شرایط مختلف جریان و رسوب کاربرد داشته و نتایج خوبی را به دست می­دهد. در نهایت نتایج به دست آمده را نیز با یک الگوریتم دیگر مقایسه کرده و روش دقیق معرفی خواهد شد.
به طور خلاصه، پژوهش حاضر با اهداف زیر به انجام رسیده است:

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-02] [ 07:28:00 ب.ظ ]




تکه هایی از متن به عنوان نمونه :
چكیده
 
بررسی عددی تاثیر ژئوبگ‏ها بر کنترل آب‏شستگی کوله پل‏ها
 
به کوشش
هاجر حسینی
 
در این تحقیق تاثیر ژئوبگ­ها بر کنترل آب‏شستگی کوله پل‏ها با بهره گرفتن از روش دینامیک سیالات محاسباتی (CFD) مورد مطالعه قرار­گرفته است. ژئوبگ­ها کیسه­هایی از جنس ژئوتکستایل هستند که با مصالحی مانند ماسه، بتن و یا مصالح حاصل از لایروبی رودخانه­ها پر می­شوند. با توجه به در دسترس بودن، هزینه کم و عدم نیاز به نیروی کار ماهر، استفاده از این مواد نسبت به مصالح سنتی بسیار مقرون به صرفه است. در این راستا، با بهره گرفتن از نرم­افزار FLOW-3D جریان و فرسایش رسوبات اطراف کوله پل‏ها و تاثیر ژئوبگ­ها و ژئومت­ها (ژئوبگ بزرگ) بر کاهش عمق آب‏شستگی مدل­سازی شد. از این نرم­افزار برای حل معادلات سه بعدی نویر-استوکس به روش مشتقات محدود (finite difference) استفاده شده­است. مدل آشفتگی RNG برای مدل­سازی میدان جریان در اطراف کوله، محلی که گردابه­های نعل اسبی تشکیل شده و جریان آشفته غالب است، به کار برده شده­است. تصدیق صحت و دقت نرم­افزار با بهره گرفتن از نتایج مدل آزمایشگاهی جریان و فرسایش اطراف کوله بدون لایه محافظ با دیواره قائم مورد بررسی قرار گرفت. در روند مدل­سازی ابتدا جریان اطراف کوله تا رسیدن به حالت پایدار گسترش یافت و سپس اجازه فرسایش به مدل داده شد. نتایج شبیه‏سازی از نظر کمی و کیفی با مدل آزمایشگاهی از مطابقت خوبی برخوردار است. بر اساس شبیه­سازی­های صورت گرفته، لایه ­های ژئوبگ و ژئومت از کوله پل در برابر فرسایش به خوبی محافظت کرده ولی باعث انتقال فرسایش به پایین­دست کوله می­شوند. همچنین تاثیر هندسه لایه ژئومت بر کاهش ماکزیمم عمق آب‏شستگی، و نیز کارایی لایه ژئومت در عمق آب، سرعت و اندازه ذرات رسوبی مختلف مورد مطالعه قرار گرفت.
 
کلید واژگان: آب شستگی- کوله پل- دینامیک سیالات محاسباتی
 
 
 
 
 
 
فهرست مطالب
 
 
عنوان                                           صفحه
 

1-1- انواع کوله پل‏ها، مکانیابی و ساخت.. 2
1-1-1- انواع کوله پل‏ها.. 2
1-1-2- مکانیابی کوله پل‏ها.. 3
1-1-3- ابعاد کوله و نحوه ساخت.. 4
1-2- میدان جریان.. 4
1-3- پروسه آب‏شستگی.. 6
1-3-1- آب‏شستگی کلی.. 6
1-3-2- آب‏شستگی کوله پل.. 7
1-4- معرفی تحقیق.. 8
 
:
2-1- مقدمه.. 11
2-2- طبقه بندی آب‏شستگی موضعی کوله پل‏ها.. 12
2-3- میدان جریان و تنش برشی بستر در محل کوله پل   13
2-4- پارامترهای تاثیرگذار بر آب‏شستگی کوله پل‏ها.. 16
2-4-1- طبقه بندی پارامترها.. 16
عنوان                                           صفحه
 
2-4-2- آنالیز ابعادی.. 17
2-5- تاثیر پارامترهای مختلف بر عمق آب‏شستگی.. 18
2-5-1- سرعت جریان عبوری.. 18
2-5-2- عمق جریان عبوری.. 20
2-5-3- طول کوله، نسبت تنگ شدگی و نسبت دهانه.. 21
2-5-4- اندازه و دانهبندی رسوبات.. 22
2-5-5- شکل کوله.. 25
2-5-6- جهت قرارگیری کوله نسبت به جریان عبوری.. 26
2-5-7- هندسه آبراهه.. 27
2-5-8- تغییرات زمانی آب‏شستگی.. 28
2-6- تخمین عمق آب‏شستگی.. 31
2-6-1- رویکرد رژیم جریان.. 31
2-6-2- رویکرد تجربی.. 32
2-6-3- رویکرد تحلیلی یا شبه تجربی.. 37
2-7- مطالعات عددی آب‏شستگی اطراف کوله پل‏ها.. 38
2-8- روش‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های کنترل آب شستگی.. 40
2-9- نتیجه‏گیری.. 42
 

3-1- مقدمه.. 44
3-2- ضوابط کلی پایداری.. 44
3-2-1- پایداری در برابر بار موج.. 44
3-2-2- پایداری بار جریان.. 48
عنوان                                           صفحه
 
3-3 -ضوابط پایداری ژئوبگ‌ها.. 52
3-3-1- بحث در مورد دانسیته نسبی.. 52
3-3-2- محافظت شیب.. 52
3-3-3- پایداری المان‌های تاج.. 56
3-4- ضابطه طراحی بر اساس بار جریان.. 57
3-5- پایداری ژئوبگ‌ها از منظر مکانیک خاک.. 57
 

پایان نامه و مقاله

 

4-1- مقدمه.. 59
4-2- مدل هیدرودینامیک.. 59
4-3- مدلسازی رسوب.. 62
4-4- مدل آشفتگی.. 66
 

5-1- مقدمه.. 69
5-2- کالیبراسیون مدل و آنالیز حساسیت مش‏بندی.. 70
5-2-1- مشخصات مدل و نحوه شبکه‏بندی.. 70
5-2-2- نتایج شبیه‏سازی.. 73
5-2-2-1- نتایج شبیه‏سازی جریان.. 73
5-2-2-2- نتایج شبیه‏سازی رسوب.. 75
5-3- بررسی تاثیر ژئومت بر کنترل آب‏شستگی کوله با دیواره قائم   81
5-4- بررسی تاثیر ژئوبگ و ژئومت بر کنترل آب‏شستگی اطراف کوله باله‏ای.. 83
5-4-1- مشخصات مدل کوله باله‏ای.. 83
 
عنوان                                           صفحه
 
5-4-2- نتایج شبیه‏سازی جریان و فرسایش اطراف کوله باله‏ای بدون
وجود لایه محافظ.. 85
5-4-3- نتایج شبیه‏سازی جریان و فرسایش اطراف کوله باله‏ای
محافظت شده با ژئوبگ.. 87
5-4-4- شبیه‏سازی جریان و فرسایش اطراف کوله بالهای محافظت شده
به وسیله ژئومت.. 91
5-5- تاثیر ضخامت و عرض لایه ژئومت بر کنترل آب‏شستگی اطراف کوله باله‏ای.. 93
5-6- بررسی اثر عمق جریان بر آب‏شستگی اطراف کوله باله‏ای بدون لایه
محافظ و کارایی کوله حفاظت شده با لایه ژئومت.. 98
5-7- مطالعه تاثیر سرعت جریان بر آب‏شستگی اطراف کوله باله‏ای
بدون لایه محافظ و کارایی کوله حفاظت شده با لایه ژئومت   100
5-8- بررسی تاثیر اندازه ذرات رسوبی و پارامتر شیلدز بر آب‏شستگی اطراف کوله باله‏ای بدون لایه محافظ و کارایی کوله حفاظت شده با لایه ژئومت و لایه ژئوبگ.. 102
 

6-1- نتایج تحقیق.. 105
6-2- پیشنهادها برای کارهای آینده.. 106
 
.. 107
 
 
 
 
 
 
فهرست جداول
 
 
عنوان                                           صفحه
 
جدول 2-1- ضریب شکل‏های کوله پل‏ها.. 25
جدول 2-2- ضریب راستای جریان برای زوایای مختلف برخورد   26
جدول 2-3- ضرایب رابطه پیشنهادی Melville (1992، 1995، 1997)   36
جدول 3-1- پارامتر پایداری برای سیستم های مختلف   49
برای سیستم های مختلف.. 49
. 50
جدول 3-4-الف- ضخـامت معـادل سیستم‌های پر شده از ماسه
(H=1 m) (Pilarczyc، a-2000).. 57
جدول 3-4-ب- ضخـامت معـادل سیستـم‌های پر شده از ماسه (H=2 m)   57
جدول 5-1- جزئیات شبکه‏بندی شبیه‏سازی‏ها.. 73
جدول 5-2- میانگین سرعت و عمق جریان و میزان خطا برای شبکه‏بندی‏های مختلف.. 75
جدول 5-3- مقایسه مقادیر عمق متوسط، سرعت متوسط برای fs,co=0.0005
و fs,co=0.002. 76

جدول 5-4- مقادیر ماکزیمم عمق آب‏شستگی مدل‏های شبیه‏سازی   81
جدول 5-5- عمق آب‏شستگی موضعی اطراف کوله قائم محافظت شده توسط ژئومت.. 83
جدول 5-6- جزئیات شبکه‏بندی مدل کوله باله‏ای.. 85
جدول 5-7- مقایسه کارایی لایه‏های ژئومت با ضخامت مختلف در کنترل آب‏شستگی.. 95
جدول 5-8- مقایسه کارایی لایه‏های ژئومت با عرض مختلف در کنترل آب‏شستگی.. 98
 
 
 
فهرست شکل‎ها
 
 
عنوان                                           صفحه
 
شکل 1-1- شمای کلی کوله‏های با دیواره شیب‏دار و باله‏ای    3
شکل 1-2- جریان عبوری از یک تنگ‏شدگی کوتاه.. 5
شکل 1-3- جریان و آب‏شستگی اطراف یک کوله و خاکریز در یک آبراهه مرکب.. 6
شکل 2-1- تغییرات زمانی آب‏شستگی در حالت آب زلال و بستر متحرک   13
شکل 2-2- نمای شماتیک میدان جریان اطراف کوله یک پل   15
شکل 2-3- تغییـرات عمق آب‏شستگی با نسبت سرعت برشی      19
شکل 2-4- تغییرات عمق آب‏شستگی ds نسبت به عمق جریان h  21
شکل 2-5- تغییرات عمق آب‏شستگی ds نسبت به طول کوله l 22
شکل 2-6- تغییرات عمق آب‏شستگی ds با اندازه دانه‏های رسوبی d50  24
24
شکل 2-8- تغییرات نسبت عمق آب‏شستگی به طول کوله ds/l با زمان t    29
شکل 2-9- استفاده از ژئوبگ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ها جهت کنترل آب شستگی کوله پل‏ها   41
شکل 3-1-شکل شماتیک سنگ چین.. 47
شکل 3-2-طرز قرار گیری کیسه ها به طور شماتیک.. 53
شکل 3-3-خلاصه نتایج آزمایش پایداری برای ژئوبگ های قرار گرفته بر شیب (D=d).. 55
شکل 5-1- نمای کلی فلوم آزمایشگاهی Kayaturk. 70
شکل 5-2- نمای کلی مدل شبیه‏سازی در FLOW-3D.. 71
شکل 5-3- شرایط مرزی مدل.. 71
عنوان                                           صفحه
 
شکل 5-4- نمای کلی مقطع عرضی شبکه‏بندی.. 73
شکل 5-5- پروفیل سطح آب در محل دماغه کوله برای چهار حالت اندازه شبکه‏بندی.. 74
شکل 5-6- خطوط هم‏تراز سرعت در نزدیکی سطح بستر رسوبی   74
شکل 5-7- بردارهای توزیع سرعت الف- ابتدای مرحله دوم شبیه‏سازی؛
ب- 5 ثانیه پس از شروع مرحله دوم.. 77
شکل 5-8- مقایسه پرفیل سرعت مدل با توزیع سرعت لگاریتمی در فواصل 1 متری
پروفیل طولی.. 79
شکل 5-9- الف- نمای کلی فلوم شبیه‏سازی؛ ب- مقطع عرضی حفره آب‏شستگی
در محل بالادست کوله؛ ج- ایجاد حفره آب‏شستگی در اطراف کوله   80
شکل 5-10- نمای سه بعدی حفره آب‏شستگی تشکیل شده در بالادست کوله   80
شکل 5-11- نمای کوله قائم حفاظت شده توسط الف) ژئومت در وجه جلوی کوله؛
ب) ژئومت در اطراف سه وجه کوله.. 82
شکل 5-12- تشکیل حفره آب‏شستگی در وجه بالادست کوله و پایین‏دست ژئومت.. 82
شکل 5-13- تشکیل حفره آب‏شستگی در وجه بالادست و پایین‏دست ژئومت   82
شکل 5-14- نمای کلی فلوم آزمایشگاهی.. 84
شکل 5-15- کوله باله‏ای یکپارچه از جنس پلکسی گلاس.. 84
شکل 5-16- نمای کلی مدل شبیه‏سازی در FLOW-3D.. 84
شکل 5-17- مکان‏های محتمل تشکیل حفره آب‏شستگی.. 86
شکل 5-18- الف- مقطع عرضی حفره آب‏شستگی؛ ب- حفره آب‏شستگی در محل کوله
(A) و پایین‏دست آن (B).. 86
شکل 5-19- نمای سه بعدی حفرات آب‏شستگی تشکیل شده.. 87
شکل 5-20- چیدمان ژئوبگ پیشنهادی.. 88
شکل 5-21- نمای کلی کوله باله‏ای محافظت شده با لایه ژئوبگ شیبدار   88
 
عنوان                                           صفحه
 
شکل 5-22- حفره آب‏شستگی تشکیل شده در اطراف لایه ژئوبگ
الف) مدل آزمایشگاهی؛ ب) مدل شبیه‏سازی.. 90
شکل 5-23- نمای کلی مدل شبیه‏سازی کوله باله‏ای محافظت شده با ژئومت   91
شکل 5-24- حفرات آب‏شستگی تشکیل شده در اطراف ژئومت الف) پلان مدل؛
ب) مدل آزمایشگاهی؛ ج) نمای سه بعدی شبیه‏سازی عددی.. 92
شکل 5-25- نمای پلان آب‏شستگی اطراف لایه ژئومت با ضخامت الف) 22 میلیمتر؛
ب) 33 میلیمتر؛ ج) 44 میلیمتر.. 93
شکل 5-26- نمای سه بعدی آب‏شستگی اطراف لایه ژئومت با ضخامت الف) 22 میلیمتر؛
ب) 33 میلیمتر؛ ج) 44 میلیمتر.. 94
شکل 5-27- خطوط هم تراز انرژی آشفتگی در نزدیکی سطح بستر رسوبی برای
کوله با لایه ژئومت الف) 22 میلیمتر؛ ب) 33 میلیمتر؛ ج) 44 میلیمتر.. 96
شکل 5-28- تشکل حفرات آب‏شستگی در اطراف لایه ژئومت با عرض 320 میلیمتر
الف) پلان ب) نمای سه بعدی.. 97
شکل 5-29- مقایسه ماکزیمم عمق آب‏شستگی کوله با لایه ژئومت و کوله بدون
محافظ برای سه عمق جریان 08/0، 1/0 و 12/0 متر در نواحی الف) B و B0؛
ب) C و A0؛ ج) D و A0. 99

شکل 5-30- مقایسه ماکزیمم عمق آب‏شستگی کوله با لایه ژئومت و کوله بدون
محافظ برای سه سرعت جریان 3/0، 4/0 و 55/0 متر بر ثانیه در نواحی الف) B و B0؛
ب) C و A0. 101

شکل 5-31- مقایسه ماکزیمم عمق آب‏شستگی کوله با لایه ژئومت، کوله با لایه ژئوبگ
و کوله بدون محافظ برای دو اندازه دانه رسوب 45/0، 48/1 میلیمتر در نواحی
الف) B و B0؛ ب) C و A0، ج) D و A0. 103

 

 
 
فهرست نشانه‏های اختصاری
 
 
B = عرض آبراهه یا فلوم
bd = عرض پایه پل استوانه­ای متحمل نیروی دراگی معادل با نیروی دراگ روی کوله
bs = عرض پایه پل هم ارز
CD = ضریب نیروی دراگ ذرات رسوبی
D = قطر پایه پل
d، d50 = قطر متوسط ذرات رسوبی
d16 = ذرات با قطر ریزتر از 16%
d50a = dmax / 1.8
d84 = ذرات با قطر ریزتر از 84%
= نسبت عمق آب‏شستگی در محل کوله به نسبت عمق آب‏شستگی در تنگ­شدگی طویل هم ارز
dmax = ماکزیمم اندازه ذرات رسوبات غیر یکنواخت
ds = عمق آب‏شستگی تعادلی رسوبات یکنواخت
dst = عمق آب‏شستگی در زمان t
Fd = ، عدد فرود densimetric
Fr = ، عدد فرود جریان عبوری
Frc = ، عدد فرود جریان عبوری متناظر با سرعت بحرانی
f1 = ضریب شکاف Lacey؛ 1.76d0.5
g = شتاب ثقل
h = عمق جریان عبوری
h* = عمق جریان در دشت سیلابی
K1,2، k1,2 = ضرایب
Kd = ضریب اندازه ذرات
Khl = ضریب عمق جریان – طول کوله
KI = ضریب شدت جریان
Ks، Ks* = ضریب شکل کوله و ضریب شکل کوله تصحیح شده
Kθ، Kθ* = ضریب زاویه قرار­گیری کوله نسبت به جریان و ضریب زاویه قرار­گیری کوله نسبت به جریان تصحیح شده
Kσ = تابع وابسته به σg
LR = طول reference، l2/3h1/3
l = طول عرضی یا طول جلو­آمدگی کوله
l* = عرض دشت سیلابی
M = نرخ دبی
m = ضرایب وابسته به اندازه ذرات رسوبی
N، N* = ضرایب زبری مانینگ به ترتیب برای آبراهه و دشت سیلابی
Ns = عدد شکل
n = متغیر­های وابسته به اندازه ذرات رسوبی
Q = دبی طرح
q = شدت دبی
r/l
s = چگالی نسبی ذرات رسوبی
T = مدت زمان رسیدن به عمق آب‏شستگی تعادلی
TR = مدت زمان بی­بعد،
T* = زمانی که
t = مدت زمان
U = سرعت متوسط جریان عبوری
Ua = 0.8Ucn
Uc = سرعت بحرانی برای ذرات رسوبی
Ucn = سرعت بحرانی برای اندازه ذرات لایه آرمور، d50a
u، v، w = مولفه­های متوسط زمانی سرعت در جهات (x, y, z) یا (θ, r, z)
u / U
u* = سرعت برشی جریان عبوری
u*c = سرعت برشی بحرانی برای ذرات رسوبی
u*cn = سرعت برشی بحرانی برای اندازه ذرات لایه آرمور، d50a
v / U
w / U
ws = سرعت ته­نشینی ذرات رسوبی
X =
x / l
xd = dst / ds
x، y، z = مختصات کارتزین
y / l
z / l
α = نسبت باز­شدگی، 1 – l / B
s – 1
ϕs = زاویه شیب دیواره حفره آب‏شستگی
1-3η = ضرایب
θ، r، z = مختصات استوانه­ای قطبی
θa = زاویه برخورد
θc = تابع entrainment شیلدز،
θt = زاویه چرخش بین مسیر جریان زیرین و جهت جریان اصلی،
ρ، ρs = به ترتیب چگالی جرمی آب و ذرات رسوبی
σg = انحراف معیار هندسی
τ0 = تنش برشی بستر ناشی از جریان عبوری
τc = تنش برشی بحرانی ذرات رسوبی
τcont = تنش برشی ناشی از تنگ­شدگی
= تنش برشی بستر ناشی از تنگ­شدگی،
τnose = تنش برشی بستر در محل دماغه کوله
= ضریب تشدید تنش برشی بستر تنها به علت وجود کوله، τ´nose / τ0
τ´nose = تنش برشی تنها به علت وجود کوله
= ضریب تشدید کلی تنش برشی در محل کوله با دیواره قائم، τnose / τ0
 
 
 
 
 
 
 
 

 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
مقدمه
 
 
1-1- انواع کوله پل‏ها، مکانیابی و ساخت
 
اگر­چه مورفولوژی آبراهه­ های رودخانه­ای از یک محل به محل دیگر تفاوت­های اساسی دارند، اما کوله پل‏ها خصوصیات عمومی واحدی دارند که می­توان از آن برای تعریف نوع آن­ها جهت پیش ­بینی میدان جریان در هندسه آبراهه­ های مختلف استفاده نمود. خصوصیات عمومی کوله پل‏ها را می­توان در قالب نوع کوله، مکان­ یابی عمومی خاکریز دسترسی و وضعیت ساخت کوله تعریف نمود. هر­یک از این خصوصیات، به همراه هندسه آبراهه و نوع رسوب بستر، تاثیر زیادی بر میدان جریان اطراف پل و در نتیجه آب‏شستگی خواهند داشت.
 
1-1-1- انواع کوله پل‏ها
به طور کلی کوله پل‏ها را می­توان به سه نوع اصلی تقسیم ­بندی نمود:
1) کوله با دیواره شیب­دار[1] (رایج­ترین نوع)
2) کوله باله­ای[2]
3) کوله با دیواره قائم
در کوله­های با دیواره شیب­دار کناره­ها مانند وجه روبرو شیب­دار هستند (معمولا با زاویه­ای کمتر از زاویه قرار­گیری[3] مصالح استفاده شده در خاکریز)؛ و گوشه­های متصل کننده وجوه و کناره­ها مانند قسمتی از یک مخروط گرد می­شوند (شکل 1-1). در کوله­های باله­ای نیز وجوه کناری خاکریز شیب­دار هستند، اما وجه روبرو عمودی است. زاویه بین وجه روبرو و باله­ معمولا ˚45 می­باشد؛ گر­چه زاویه­ های دیگری نیز به کار برده می­شوند. به علت اتصال ناگهانی باله­ به وجه روبرویی، یک گوشه تیز تشکیل شده که باعث می­ شود جریان نسبت به کوله­های با دیواره شیب­دار کمتر آب­لغز[4] باشند (شکل 1-1) . در کوله با دیواره قائم، هم وجوه کناری و هم وجه روبرویی به صورت عمودی است. زاویه وجوه کناری و روبرویی، ˚90 است، بنابراین جریان از جریان اطراف کوله باله­ای هم دارای آب­لغزی کمتری می­باشد.
 
شکل 1-1- شمای کلی کوله­های با دیواره شیب­دار و باله­ای (NCHRP- report 578، 2007)
 
1-1-2- مکان­ یابی کوله پل‏ها
مکان­ یابی کوله پل­های واقع بر رودخانه­ها را می­توان با پارامتر­های طول کوله (L)، عرض دشت سیلابی[5] (Bf)، و نصف عرض آبراهه (B) بیان نمود. به طور معمول مکان­ یابی­های زیر رایج­اند (Morales & Ettema، 2011):
1) کوله در دشت سیلابی آبراهه مرکب به گونه­ ای قرار گیرد که باشد. این مکان­ یابی برای کوله­های با دیواره شیب­دار معمول است.
2) کوله کل دشت سیلابی تا آبراهه اصلی را در بر­بگیرد به گونه­ ای که باشد. این مکان­ یابی برای کوله­های باله­ای در مسیل­های کوچک مناسب است.
3) کوله در آبراهه مستطیلی قرار گیرد. این مکان­ یابی رایج نیست، و ممکن است به عنوان یک کوله کوتاه در یک دشت سیلابی عریض محسوب می­ شود.
 
1-1-3- ابعاد کوله و نحوه ساخت
پل­های آمریکا معمولا دارای حداقل دو خط 12 فوتی (m 66/3) هستند که برای یک عرض جاده کامل 24 فوت (m 32/7) به اضافه دو شانه راه 8 فوتی (m 44/2) در هر طرف، یک عرض 40 فوتی (m 2/12) را به دست می­دهد. خاکریز کنار نیز با شیب­های 2H:1V تا 3H:1V اجرا می­ شود، هر­چند رایج­ترین شیب کناره 2H:1V است.
کوله­ها معمولا بر روی یک دیوار حائل بتنی، یا ستونی واقع بر روی یک pile cap نگاه داشته شده توسط شمع­ها و یا یک پی گسترده قرار می­گیرند، و به خاکریز دسترسی متصل می­شوند.
 
[1] – Spill-through abutment

موضوعات: بدون موضوع  لینک ثابت
 [ 07:28:00 ب.ظ ]




تکه هایی از متن به عنوان نمونه :
چکیده
 
بکارگیری روش­های عددی بدون شبکه
در مدلسازی امواج غیرخطی سطح آب ناشی از باد
 
به کوشش
سیده فهیمه میرلوحی جوابادی
 
در این تحقیق معادلات دیفرانسیل موج غیرخطی توسط روش عددی RBF-DQ محلی حل شده ­اند. این معادلات دیفرانسیل که بصورت معادله­ لاپلاس (بعنوان معادله­ حاکمه) و شرایط مرزی غیرخطی در سطح آزاد می­باشند؛ اساس مدل ریاضی در این پژوهش­اند. با بهره گرفتن از این مدل ریاضی می­توان انتشار و تغییرات سطح آب را پس از تولید موج به خوبی شبیه سازی نمود. روش عددی RBF-DQ یک روش عددی بدون شبکه­ نوین است؛ که تا به حال جهت حل مسائلی نظیر معادلات نویراستوکس، مدل­سازی مسئله­ انتقال حرارت، شبیه­سازی نشت غیرماندگار و … بکار گرفته شده و نتایج قابل قبولی بدست داده است. در این روش علاوه بر بهره­بردن از ویژگی­های روش دیفرانسیل کوادرچر در تخمین مستقیم مشتق، با بکارگیری توابع پایه­ شعاعی، از مزایای روش­های عددی بدون شبکه نیز می­توان بهره­برد. ضمن آنکه می­توان روش حاصل را در مسائل با مرز نامنظم نیز بکارگرفت. یکی از مهمترین عوامل موثر بر دقت این روش، پارامتر شکل تابع پایه­ شعاعی است که در این پژوهش، مقادیر مناسب آن بااستفاده از آنالیز عدد وضعیت ماتریس ضرایب وزن تخمین زده می­ شود. در تحقیق حاضر بجای فرم کلی، از فرم محلی روش RBF-DQ استفاده گردیده است. این روش می ­تواند با حفظ دقت روش RBF-DQ، محدوده کاربرد آن را گسترش داده و هزینه­ های محاسباتی را كمتر نماید. به منظور شبیه­سازی سطح آزاد که بخش اصلی شبیه­سازی می­باشد؛ از روش مرکب اویلری و لاگرانژی استفاده ­شده­است. تصدیق صحت و دقت مدل حاضر توسط مدل­های تحلیلی، مدل­های عددی در دسترس و نتایج آزمایشگاهی بررسی شده است. در این پژوهش ابتدا مدل انتشار امواج در مخزن عددی بررسی می­گردد و سپس انتشار امواج حاصل از موج­ساز مطالعه می­ شود. نتایج این تحقیق نشان داد كه در مسئله­ای با شرط مرزی متغیر، از نظر حجم محاسبات، بکارگیری یک روش بدون شبکه نسبت به روش­های متکی بر شبکه اولویت دارد. روش RBF-DQ محلی به خوبی قادر به حل معادلات بوده و در برخی موارد دقت آن از روش­های تحلیلی و عددی دیگر بهتر است. همچنین بررسی عوامل موثر بر غیرخطی شدن موج نشان داد که ارتفاع موج نسبت به عمق آب و طول موج اثرگذارتر است.
 
کلیدواژگان: مدل موج غیر خطی- روش های عددی بدون شبکه
 
 
فهرست مطالب
 
 
عنوان                                         صفحه
 
فصل اول: مقدمه
1-1- کلیات.. 2
1-2- معرفی تحقیق حاضر.. 2
 
فصل دوم: بر پژوهش های پیشین
2-1- مقدمه.. 10
2-2- پیشینه ی تحقیقات انجام شده بر روی موج.. 11
2-2-1- مدل های اوّلیه ی امواج غیرخطی.. 11
2-2-2- مدل های جدید امواج غیرخطی.. 13
2-2-3- روش های عددی بدون شبکه در مدلسازی امواج غیرخطی   15
2-3- پیشینه ی تحقیقات انجام شده بر روی روش عددی مورد استفاده   16
2-3-1- روش عددی دیفرانسل کوادرچر (DQ).. 16
2-3-2- توابع پایه ی شعاعی (RBF).. 20
2-3-2-1- انواع توابع پایه ی شعاعی.. 20
2-3-2-2- کاربرد توابع پایه ی شعاعی در درونیابی   21
2-3-2-3- کاربرد توابع پایه ی شعاعی در حل معادلات دیفرانسیل   22
2-3-2-4- روش عددی RBF-DQ.. 23
2-3-2-5- تابع شعاعی MQ.. 24
 
عنوان                                         صفحه
 
2-3-3- عوامل موثر بر دقت و خطای مدل.. 25
2-3-3-1- چگالی گره ها.. 26
2-3-3-2- پارامتر شکل.. 26
2-3-3-2-1- تاثیر پارامتر شکل بر خطا.. 26
2-3-3-2-2- پارامتر شکل بهینه.. 29
2-3-3-3- پدیده ی رانچ.. 32
2-3-3-4- دقت محاسبات، خطای گرد کردن و عدد وضعیت   33
2-4- جمع بندی و نتیجه گیری.. 33
 

3-1- مقدمه.. 36
3-2- تئوری های موج.. 36
3-2-1- تئوری موج خطی.. 36
3-2-2- تئوری موج غیرخطی.. 39
3-2-2-1- دسته بندی تئوریهای اولیهی امواج غیرخطی   39
3-2-2-1-1- تئوری استوکس.. 39
3-2-2-1-2- تئوری Cnoidal 41
3-2-2-1-3- تئوری Boussinesq. 42
3-2-2- شبیه سازی عددی انتشار موج غیرخطی.. 42
3-2-2-1- هندسه ی مسئله و تعریف مخزن عددی.. 42
3-2-2-2- معادله ی حاکمه و شرایط مرزی.. 44
3-2-2-2-1- تئوری موج ساز.. 44
3-2-2-2-2- تابع صعودی.. 46
3-2-2-3- روش مرکب اویلری و لاگرانژی (MEL).. 48
عنوان                                         صفحه
 
3-2-2-4- ناحیه ی استهلاک یا ساحل مصنوعی.. 49
3-2-2-5- بکارگیری روش RBF-DQ برای تخمین مشتقات مکانی   50

پایان نامه و مقاله

 

3-2-2-5-1- انتخاب تابع پایه.. 50
3-2-2-5-2- تخمین مشتق های مکانی با روش RBF-DQ.. 51
3-2-2-5-3- روش RBF-DQ محلی.. 52
3-2-2-5-4- چگونگی اعمال شرایط مرزی.. 53
3-2-2-5-6- انتخاب پارامتر شکل مناسب.. 53
3-2-2-6- انتگرال گیری بر روی زمان.. 54
3-2-2-7- تابع یکنواختکننده.. 56
 
فصل چهارم:
4-1- مقدمه.. 58
4-2- مثال های عددی.. 59
4-2-1- مثال عددی اول: معادله ی برگرز.. 59
4-2-1-1- بررسی عوامل موثر بر افزایش دقت روش.. 60
4-2-1-1-1- بررسی تاثیر فاصله ی گرهها بر مدل   61
4-2-1-1-2- بررسی تاثیر پارامتر شکل بر مدل.. 61
4-2-1-1-3- بررسی تاثیر پارامتر شکل و فاصله ی گره ها بصورت همزمان.. 64
4-2-1-1-4- دقت محاسبات.. 65
4-2-1-1-5- پدیدهی رانچ.. 66
4-2-1-2- مقایسه ی روش های RBF-DQ و DQ.. 67
4-2-1-3- حل مسئله با بهره گرفتن از مقدار پارامتر شکل بهینه   68
4-2-2- مثال عددی دوم: معادله ی هلمهلتز.. 69
4-2-2-1- بررسی عوامل موثر بر افزایش دقت روش.. 70
عنوان                                         صفحه
 
4-2-2-1-1- بررسی تاثیر پارامتر شکل و تعداد گره ها بصورت همزمان.. 70
4-2-2-1-2- پدیدهی رانچ.. 71
4-2-2-2- حل مسئله با بهره گرفتن از مقدار پارامتر شکل بهینه   72
4-3- شبیه سازی انتشار موج در مخزن عددی.. 73
4-3-1- انتشار موج خطی.. 73
4-3-1-1- بررسی تاثیر همزمان تعداد گره ها و پارامتر شکل   75
4-3-1-1-1- تاثیر پارامتر شکل و تعداد گره ها در راستای افقی.. 78
4-3-1-1-2- تاثیر پارامتر شکل و تعداد گرهها در راستای عمق   80
4-3-1-1-3- بررسی تاثیر همزمان تعداد گره ها در دامنه ی تاثیر
و پارامتر شکل.. 83
4-3-1-2- حل مسئله با بهره گرفتن از پارامتر شکل مناسب و مقایسه ی
نتایج با نتایج روش تحلیلی.. 85
4-3-1-3- تاثیر طول ناحیهی استهلاک.. 88
4-3-1-4- مقایسه ی نتایج با نتایج روش عددی RBF  88
4-3-2- شبیه سازی انتشار موج غیرخطی در مخزن عددی   89
4-3-2-1- بررسی تاثیر همزمان تعداد گرهها و پارامتر شکل   91
4-3-2-1-1- تاثیر پارامتر شکل و تعداد گرهها در راستای افقی   91
4-3-2-1-2- تاثیر پارامتر شکل و تعداد گره ها در راستای عمق   94
4-3-2-1-3- بررسی تاثیر همزمان تعداد گره ها در دامنه ی
تاثیر و پارامتر شکل.. 96
4-3-2-2- حل مسئله با بهره گرفتن از پارامتر شکل مناسب و مقایسه ی
نتایج با نتایج روش تحلیلی.. 99
4-3-2-3- مقایسه ی نتایج با نتایج روش عددی RBF. 102
4-4- انتشار موج ایجاد شده توسط موج ساز در مخزن آزمایشگاهی   102
عنوان                                         صفحه
 
4-4-1- بررسی عوامل موثر بر غیرخطی شدن موج.. 105
 
فصل پنجم:
5-1- مقدمه.. 109
5-2- جمع بندی و نتیجه گیری.. 109
5-3- پیشنهادات.. 110
 
.. 111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست جداول
 
 
عنوان                                         صفحه
 
جدول2- 1- انواع توابع شعاعی پرکاربرد.. 20
جدول4- 1-تخمین پارامتر شکل بهینه با بهره گرفتن از کمینه ی نرمال خطای نسبی.. 62
جدول4- 2-تخمین پارامترشکل بهینه با بهره گرفتن از کمینه کردن نرمال خطای نسبی.. 64
جدول4- 3-مقایسه ی خطای RMSE دو روش دیفرانسیل کوادرچر و RBF-DQ
برحسب تعداد گره و در زمان های مختلف.. 67
جدول4- 4-مقایسه ی مقادیر خطای تابع برحسب تعداد گره های مختلف
در راستای افقی و بازای پارامتر شکل مناسب.. 71
جدول4- 5-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 79
جدول4- 6-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف
در راستای افقی و بازای پارامتر شکل مناسب.. 80
جدول4- 7-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در راستای افقی بازای c=1. 80
جدول4- 8-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب هر حالت   81
جدول4- 9-مقایسه ی مقادیر خطای تابع تراز سطح آب برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب هر حالت   82
جدول4- 10-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در دامنه ی تاثیر و بازای پارامتر شکل مناسب هر حالت   84
عنوان                                         صفحه
 
جدول4- 11-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های
مختلف در دامنه ی تاثیر و بازای پارامتر شکل مناسب هر حالت   85
جدول4- 12-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در دامنه ی تاثیر بازای c=1. 85
جدول4- 13-مقایسه ی تعداد کل گره ها و فاصله ی گام های زمانی مدل RBF-DQ
و RBF. 89
جدول4- 14-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 92
جدول4- 15مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 93
جدول4- 16-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در راستای افقی بازای c=1. 93
جدول4- 17-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب.. 95
جدول4- 18-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف در راستای عمق و بازای پارامتر شکل مناسب.. 96
جدول4- 19-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره ها
در دامنه ی تاثیر و بازای پارامتر شکل مناسب.. 97
جدول4- 20-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره ها در
دامنه ی تاثیر و بازای پارامتر شکل مناسب.. 98
جدول4- 21-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در دامنه ی تاثیر بازای c=1. 99
جدول4- 22-مقایسه ی تعداد کل گره ها و فاصله ی گام های زمانی
مدل RBF-DQ و RBF. 101
 
 
 
فهرست شکل
 
 
عنوان                                         صفحه
 
شکل1- 1-تصاویری از تاثیر امواج بر پیرامون.. 4
شکل1- 2-طبقه بندی امواج.. 5
شکل 1- 3-پدیده ی جداسازی امواج ((Reeve. 6
شکل2- 1-محدوده مناسب برای بکارگیری تئوری های موج.. 13
شکل2- 2-پهن شدن تابع پایه ی شعاعی MQ با تغییر پارامتر شکل
(نرمال شده به مقدار بیشینه ی 1).. 27
شکل3- 1-موج خطی سینوسی و پارامترهای آن.. 37
شکل3- 2- هندسه ی مسئله، دامنه و مرزها در پلان xz. 43
شکل3- 3-طرح شماتیک گره مرجع و دامنهی تاثیر آن.. 52
شکل4- 1-مرتبه ی همگرایی خطا نسبت به فاصله ی گرهها   61
شکل4- 2-نرخ همگرایی خطا برحسب پارامتر شکل.. 62
شکل4- 3-نرخ همگرایی خطا برحسب مقادیر پارامتر شکل کوچک   63
شکل4- 4-نرخ همگرایی خطا برحسب پارامتر شکل.. 63
شکل4- 5-نرخ همگرایی خطا برحسب مقادیر پارامتر شکل کوچک   64
شکل4- 6-مقادیر خطای میانگین بازای مقادیر مختلف فاصله ی گره ها برحسب
پارامتر شکل بدون بعد.. 65
شکل4- 7-مقایسه ی خطای حاصل از دو روش محاسبات مضاعف و اختیاری برحسب پارامتر شکل (ε نرمال خطای نسبی است.).. 66
عنوان                                         صفحه
 
شکل4- 8-توزیع خطا در راستای x واثر پدیده ی رانچ بر آن   66
شکل4- 9-مقایسه ی مقادیر تابع u برحسب x با روش های تحلیلی و RBF-DQ
در زمان T=0.1s. 68
شکل4- 10-مقایسه ی مقادیر تابع u برحسب x با روش های تحلیلی و RBF-DQ
در زمان T=1s. 68
شکل4- 11-بررسی تغییرات عدد وضعیت ماتریس ضرایب بازای مقادیر   70
مختلف پارامتر شکل و تعداد گره ها.. 70
شکل4- 12-مقادیر خطای میانگین بازای مقادیر مختلف فاصله ی گره ها برحسب پارامتر شکل بدون بعد.. 71
شکل4- 13-توزیع خطا در راستای x واثر پدیده ی رانچ بر آن برای   72
دو مقدار مختلف از پارامتر شکل.. 72
شکل4- 14-مقایسه ی نتایج مدل عددی RBF-DQ با روش المان محدود   73
شکل4- 15-طرح شماتیک آرایش گرهها در مخزن عددی.. 76
شکل4- 16-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در راستای افقی.. 77
شکل4- 17-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در راستای عمق.. 77
شکل4- 18-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در زیر دامنه ها.. 77
شکل4- 19-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل
و بازای مقادیر مختلف تعداد گره ها در راستای افقی   78
شکل4- 20-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای افقی.. 79
 
عنوان                                         صفحه
 
شکل4- 21-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 81
شکل4- 22-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در راستای عمق.. 82
شکل4- 23-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در دامنه ی تاثیر.. 83
شکل4- 24-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در دامنه ی تاثیر.. 84
شکل4- 25-تراز سطح آب برحسب مکان در زمان t=25 ثانیه   86
شکل4- 26-موقعیت گره ها در زمان t=25 ثانیه.. 86
شکل4- 27-تراز سطح آب بر حسب زمان در وسط مخزن.. 87
شکل4- 28-انتشار امواج در مخزن در چهار زمان متفاوت   87
شکل4- 29-تاثیر طول ناحیه ی استهلاک بر تراز سطح آب.. 88
شکل4- 30-مقایسه ی نتیایج روش RBF-DQ با روش RBF در زمان t=20 ثانیه   89
شکل4- 31-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل
و بازای مقادیر مختلف تعداد گره ها در راستای افقی   92
شکل4- 32-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در راستای افقی.. 93
شکل4- 33-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 94
شکل4- 34-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 95
شکل4- 35-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در دامنه ی تاثیر.. 97
عنوان                                         صفحه
 
شکل4- 36-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در دامنه ی تاثیر.. 98
شکل4- 37-تراز سطح آب برحسب مکان در زمان t=25 ثانیه   99
شکل4- 38-موقعیت گره ها در زمان t=25 ثانیه.. 100
شکل4- 39-تراز سطح آب بر حسب زمان در وسط مخزن(x=15 متر)   100
شکل4- 40-انتشار امواج در مخزن در چهار زمان متفاوت   101
شکل4- 41-مقایسه ی نتیایج روش RBF-DQ با روش RBF در زمان t=20 ثانیه   102
شکل4- 42-هندسه ی موج ساز شناور گوه ای.. 103
شکل4- 43-تراز سطح آزاد بر حسب زمان در مکان x/a=9.629. 104
شکل4- 44-تراز سطح آزاد بر حسب زمان در مکان x/a=9.629. 104
شکل4- 45-موقعیت گره ها در زمان t=15.7 ثانیه.. 105
شکل4- 46-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/h  106
شکل4- 47-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/L   106
شکل4- 48-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/L   107
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 
 
 
 
 
مقدمه
 
 
1-1- کلیات
 
اقیانوسها و دریاها سرمایه های عظیم جهان هستی بشمار می­آیند و اثرات مهمی بر معیشت مردم، اقتصاد، توریسم و حمل و نقل می­گذارند. دراین محیط های آبی بیکران،
پدیده­های گوناگونی روی می­دهد؛ یکی از آشکارترین این پدیده ­ها که پیوندی ناگسستنی با دریاها و اقیانوسها دارد؛ امواج ناشی از باد است. ­شناخت و پیش­ بینی این امواج برای بهره‌برداری صحیح و ایمن از اقیانوس­ها و دریاها امری ضروری است. در تحقیق حاضر این امواج مورد بررسی قرارگرفته­اند و مدلی ریاضی برای شبیه­سازی آنها ارائه­شده­است.
 
 
1-2- معرفی تحقیق حاضر
 
بیش از 75% از کره­ی زمین از آب پوشیده­شده­است. این موضوع خود بیانگر اهمیت شناخت و بررسی پدیده­هایی است که در این بخش وسیع از کره­ی زمین رخ می­دهند. امواج از مهمترین پدیده­های موجود در محیط­های آبی بشمار می­آیند. بنابراین پیش بینی و شبیه­سازی آنها نقش بسزایی در بخدمت گرفتن و کنترل دریاها و اقیانوس­ها دارد. بطور مثال، ساخت سازه­های ساحلی برای ایمنی ساحل و کنترل حریم دریا، طراحی سازه­های فرا ساحلی به منظور بهره ­برداری از نفت و گاز، مطالعات زیست محیطی، طراحی کشتی­ها و حمل و نقل ایمن آنها و انتقال رسوب همگی نیازمند اطلاعاتی دقیق و کامل از امواج آب هستند.

الف) (

(ب)
(ج)
شکل1- 1-تصاویری از تاثیر امواج بر پیرامون
 
دستیابی به اطلاعات امواج و ویژگی­های آنها به­ دو روش­ امکان­ پذیر است. روش نخست، تخمین امواج بوسیله­ ابزارهای اندازه‌گیری، نظیر شناورهای اندازه‌گیری موج[1] یا ماهواره­ها است. و روش دوم مدلسازی امواج است که می ­تواند توسط مدل­های ریاضی یا فیزیکی
انجام­پذیرد. ازآنجایی‌ که اندازه‌گیری­هایی که توسط شناورهای اندازه‌گیری موج انجام می­شوند؛ نقطه­ای هستند و تصاویر ماهواره­ای نیز از دقت کافی‌ برخوردار نیستند؛ شبیه­سازی توسط مدل­های ریاضی و فیزیکی اهمیت فراوانی دارد. از سوی دیگر تهیه­ مدل­های فیزیکی مشکل، و مستلزم صرف زمان و هزینه­ زیادی می­باشد؛ ازاینروست که با پیشرفت­ کامپیوترها مدل­های ریاضی جایگاه مهمی در شبیه­سازی­ها و مدلسازی­های مسائل مهندسی پیدا کرده ­اند. در سالهای اخیر مدل­های عددی برای شبیه­سازی امواج نیز مورد استفاده قرارگرفته­اند.
امواج تحت اثر عوامل گوناگون ایجاد می­شوند. باد، اغتشاشات بستر دریا و نیروی گرانش خورشید و ماه سه عامل اصلی تولید موج­اند. امواج ناشی از باد کوتاه­اند و پریود کوچکتری دارند. درمقابل امواج ناشی از اغتشاشات بستر (سونامی) و امواج ناشی از گرانش (جزرومدی) قرار دارند که در گروه امواج بلند جای می­گیرند. طبقه ­بندی امواج و انرژی نظیر هرنوع براساس پریود در شکل (1-2) نشان داده­شده­است.
 
شکل1- 2-طبقه بندی امواج (Reeve و همکاران، 2004)
 
در این پژوهش به بررسی امواج کوتاه ناشی از باد پرداخته­شده­است. پس از ایجاد امواج توسط باد، حرکت آنها آغاز می­ شود. در مدت زمان حرکت، امواج از یکدیگر جدا شده و ارتفاعشان کاهش می­یابد اما طول موج و پریودشان حفظ می­ شود. به این فرایند جداسازی امواج گفته می­ شود. امواجی که در ناحیه­ی تولید قرار دارند، نامنظم، کوتاه و تیز[2] اند (Reeve و همکاران، 2004) اما با دور شدن از این ناحیه فرم تقریبا منظم و کوتاه پیدا می­ کنند و در نهایت به امواج دورا تبدیل می­شوند (شکل (1-3)).
شکل 1- 3-پدیده ی جداسازی امواج (Dispersion) (Reeve و همکاران، 2004)
 
در مدلسازی­ امواج کوتاه ناشی از باد، معادلات و قواعد حاکم، می­توانند بسته به شرایط و کاربرد مدل، خطی و یا غیرخطی درنظرگرفته­شوند. بطور مثال فرایند شکست موج در آبهای عمیق (کلاهک سفید[3]) بصورت محلی شدیدا غیرخطی است. اما بطور متوسط استهلاک انرژی نظیر با آن در مقیاس بزرگ ضعیف است. مثال دیگر سازه­های در معرض امواج هستند. مثلا در اندازه ­گیری نیروهای وارد بر یک سازه­ی دریایی، در مواردی می­بایست امواج را غیرخطی مدل کرد. بطورکلی برای مدلسازی امواج خیلی تیز یا امواج در آبهای کم عمق یا در
مقیاس­های کوچک، مدل­های خطی پاسخگو نیستند و می­بایست از مدل­های غیرخطی استفاده کرد (Holthuijsen، 2007). هدف از این تحقیق بررسی و شبیه­سازی امواج غیرخطی است.
تاکنون محققین پژوهش­های بسیاری در زمینه­ مدلسازی امواج غیرخطی ناشی از باد انجام داده­اند تئوری­های اولیه، تئوری­های تحلیلی هستند. اما تئوری­های جدید برمبنای معادلات دیفرانسیل جزئی[4] می­باشند و حل آنها با روش­های عددی میسر است (Holthuijsen، 2007)). روش­های المان محدود[5] و تفاضل محدود[6] روش­هایی هستند که در این زمینه مورد استفاده قرارگرفته­اند. بعنوان مثال Mei (1978) از روش المان محدود و Chan و Street (1970) از تفاضل محدود استفاده کردند. یکی از پرکاربردترین روش­ها در حل معادلات غیرخطی موج، روش المان مرزی[7] است که توسط محققین زیادی مانند Cokelet و Longuet-Higgings (1976) بکارگرفته­شده­است. روش­های ذکر شده نیازمند شبکه­بندی دامنه­ محاسباتی هستند. این شبکه­بندی باید مطابق با معیارهای خاص انجام گیرد. چراکه شکل و نحوه­ اتصال المان­ها که کیفیت شبکه را کنترل می­نمایند؛ دقت نتایج را مستقیما تحت تاثیر قرار می­دهند. ضمن اینكه در بیشتر مسائل به دلیل انحراف المان­ها میبایست شبكه­بندی در همه­ی گام­های زمانی و یا برخی از آنها مجدداً انجام شود و این شبكه­بندی­هاخود به­اندازه­ شبكه­ی اولیه هزینه­بر و زمانبر هستند. به همین دلیل روش های عددی بدون شبكه[8] در مدلسازی امواج غیرخطی نیز مانند سایر زمینه ­های مهندسی مورد توجه قرارگرفتند. یکی از روش­های عددی بدون شبکه­ ای که در سال­های اخیر مورد استفاده محققین قرارگرفته، روش RBF-DQ است. که در آن برای تخمین مشتق از روش DQ بهره­گرفته می­ شود. به­کمک روش متکی بر شبکه­ی[9]­ DQ می­توان باوجود گره­های اندک در دامنه به نتایج خوبی دست­یافت. ولی نمی­توان این متد را در دامنه­های نامنظم بکارگرفت (Hashemi و Hatam، 2011)؛ چراکه مشتق تابع بوسیله­ DQ در هر راستا بصورت مجموع خطی وزن­دار مقادیر تابع در همان راستا بیان می­ شود و در دامنه­های نامنظم امکان فراهم کردن گره­های منظم در یک راستای خاص مقدور نیست. اما با بهره گرفتن از توابع پایه­ شعاعی[10] بعنوان تابع شکل در DQ می­توان از این مشکل اجتناب کرد. ضمن آنکه بکارگیری توابع شعاعی در روش DQ آنرا به یک متد بدون شبکه تبدیل خواهد کرد که معایب ذکر شده روش­های متکی بر شبکه را ندارد.
از میان انواع مختلف توابع شعاعی، در این تحقیق بدلیل عملکرد خوب تابع MQ از این نوع تابع در حل مسائل استفاده­شده­است. این تابع دارای پارامتری بنام پارامتر شکل[11] است که دقت نتایج را تاحد زیادی تحت تاثیر قرار می­دهد. تاکنون پژوهش­های فراوانی برای محاسبه­ی مقدار بهینه­ این پارامتر ارائه ­شده ­اند. اما هیچ­یک روشی تئوری و جامع ارائه نداده­اند. بهمین دلیل تحقیقات در این زمینه همچنان ادامه دارد.
[1] Wave bouy
[2] Steep
[3] White capping
[4] Partial differential equations
[5] Finite element
[6] Finite difference

موضوعات: بدون موضوع  لینک ثابت
 [ 07:27:00 ب.ظ ]




شهریور1392
تکه هایی از متن به عنوان نمونه :
چکیده
 
تدوین مدل تخصیص کمی وکیفی آب در حوضه‌های آبریز: کاربرد تئوری بازی‌ها
 
 
به کوشش
عاطفه پویا
 
عوامل متعددی مانند خصوصیات هیدرولوژیکی، اقتصادی و زیست‌محیطی بر نحوه تخصیص منابع آب در یک حوضه آبریز تأثیر می‌گذارند. در نظر گرفتن این عوامل در روند تخصیص منابع آب، لحاظ عدم‌قطعیت‌های موجود در عوامل مذکور و وجود ذینفعان متعدد در یک حوضه آبریز باعث می­ شود اعمال یک رویکرد جامع و پایدار در بهره ­برداری از منابع آبی حوضه آبریز، امری پیچیده و دشوار باشد. در این پایان‌نامه با توجه به اهمیت موضوع، ابتدا مدلی جهت تخصیص همزمان کمی وکیفی منابع آب در سیستم رودخانه-مخزن براساس سه معیار عدالت، بهره‌وری و پایداری تدوین گردیده و سپس جهت لحاظ عدم‌قطعیت­های موجود از روش بهینه‌سازی سناریوها استفاده شده است. در مرحله بعد با بهره گرفتن از تئوری بازی‌ها مدل همکارانه با هدف حداکثرسازی سود حاصل از تخصیص آب در سیستم تدوین شده و از رویکرد بازی همکارانه [1]FVLC جهت بازتوزیع سود حاصل از تخصیص همکارانه استفاده شده است.کارایی مدل پیشنهادی در حوضه آبریز رودخانه رودبال در استان فارس مورد ارزیابی قرار گرفته است.
واژگان کلیدی: تخصیص کمی و کیفی، تئوری بازی، بهینه‌سازی سناریوها، بازی همکارانه
 
 
 
فهرست مطالب
 
 

صفحه

عنوان                                                                                         
 
فصل اول: مقدمه
1-1- مقدمه…………………………….. 2
1-2- اهمیت مسئله……………………….. 3
1-3- هدف………………………………. 5
1-4- سؤالات اساسی تحقیق………………….. 6
1-5- فرض‌های ساده کننده تحقیق…………….. 6
1-6- نوآوری‌های تحقیق……………………. 6
1-7- ساختار پایان‌نامه…………………… 7
فصل دوم: مرور پیشینه مطالعات
2-1- مقدمه…………………………….. 9
2-2- پیشینه مطالعات در زمینه مدیریت منابع آب در حوضه آبریز 10
2-3- پیشینه مطالعات در زمینه به کارگیری تئوری بازی‌ها در مدیریت کمی و کیفی منابع آب…………………… 13
2-4- جمع‌بندی…………………………… 19
 
فصل سوم: ابزار کارهای مورد استفاده
3-1- مقدمه…………………………….. 22
3-2- شبیه‌سازی و بهینه‌سازی……………….. 23
3-2-1- نرم‌افزار GAMS…………………. 23
3-2-2- Solver MINOS…………………….. 24
3-2-3- شبیه‌سازی کیفی…………………. 24

صفحه

عنوان                                                                                         
 
3-3- تئوری بازی‌ها………………………. 24
3-3-1- تفاوت میان تصمیم گیری و بازی……. 25
3-3-2- برخی از عوامل تأثیرگذار بر نوع بازی 25
3-3-3- بازی همکارانه…………………. 26
3-3-3-1- هسته…………………….. 27
3-4- تحلیل سناریوها…………………….. 28
3-4-1- تعریف سناریو و سناریوسازی………. 29
3-4-2- روش‌های سناریوسازی……………… 30
3-4-3- ساختار عمومی مدل بهینه‌سازی با بهره گرفتن از سناریوها                                                31
3-5- شاخص SPI…………………………… 34
3-6- جمع‌بندی…………………………… 36
 
فصل چهارم: مطالعه موردی: سیستم آبی حوضه رودخانه رودبال
4-1- مقدمه…………………………….. 38
4-2- منابع آبی…………………………. 40
4-3- مشخصات سد رودبال به عنوان اصلی‌ترین منبع ذخیره آب سطحی در حوضه رودخانه رودبال…………………… 40
4-4- نیازهای آبی……………………….. 41
4-4-1- نیاز صنعت و معدن………………. 41
4-4-2- نیاز شرب……………………… 42
4-4-3- نیاز بخش کشاورزی………………. 42
4-4-3-1- نیاز شبکه آبیاری………….. 43
4-4-3-2- نیاز کشاورزان سنتی………… 43
4-5- خصوصیات اقتصادی بخش کشاورزی…………. 44
4-6- جمع‌بندی…………………………… 44
 
فصل پنجم: ساختار مدل پیشنهادی
5-1- مقدمه…………………………….. 51
5-2- ساختار مدل پیشنهادی………………… 51
5-3- تدوین مدل بهینه‌سازی تخصیص اولیه کمی وکیفی آب 54

صفحه

پایان نامه و مقاله

 

عنوان                                                                                         
 
5-3-1- عدالت………………………… 54
5-3-2- کارایی……………………….. 55
5-3-3- پایداری………………………. 55
5-3-4- مدل شبیه‌سازی کیفیت آب………….. 56
5-3-5- تدوین مدل قطعی تخصیص اولیه……… 57
5-4- تدوین مدل غیرقطعی برمبنای روش بهینه‌سازی سناریوها 60
5-5- تدوین مدل تخصیص کمی و کیفی همکارانه….. 62
5-6- بازتوزیع سود ائتلاف با بهره گرفتن از مدل‌ بازی همكارانه FVLC                                                63
5-6-1- بازی دو جانبه همكارانه FVLC…….. 63
5-6-2- نحوه تبدیل بازی چندجانبه به بازی دو جانبه   64
5-7- جمع‌بندی…………………………… 65
 
فصل ششم: نتایج مدل پیشنهادی
6-1- مقدمه…………………………….. 67
6-2- نتایج مدل تخصیص کمی و کیفی در حالت اولیه و همکارانه  67
6-3- صحت سنجی مدل………………………. 79
6-4- جمع‌بندی……………………………. 82
 
فصل هفتم: خلاصه، جمع‌بندی و پیشنهادات
خلاصه، جمع‌بندی و پیشنهادات……………….. 84
منابع…………………………………. 86
 
 
 
 
 
 
 
 
 
فهرست جدول‌ها

صفحه

 
عنوان                                                                                         
 
جدول 3-1- استاندارد وضعیت بارش براساس SPI…… 36
جدول 4-1- مقادیر سطح، حجم و ارتفاع مخزن سد رودبال  41
جدول 4-2- مقادیر تبخیر و بارش بر سطح مخزن سد.. 46
جدول 4-3- نیاز ماهانه و سالانه مصارف صنعتی از سد رودبال (میلیون مترمکعب)………………………………… 46
جدول 4-4- نیاز ماهانه و سالانه مصارف شرب از سد رودبال (میلیون مترمکعب)………………………………… 46
جدول 4-5- نیاز آبی ناخاص محصولات پیشنهادی (مترمکعب در هر هکتار)……………………………………….. 47
جدول 4-6- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال پرآبی- الگوی تیپ الف…………. 48
جدول 4-7- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال نرمال- الگوی تیپ ب…………… 48
جدول 4-8- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال خشک- الگوی تیپ پ…………….. 49
جدول 4-9- عملکرد و قیمت محصولات کشاورزی در منطقه 49
جدول 6-1- شاخص SPI در منطقه………………… 68
جدول 6-2- مقدار آب تخصیص داده شده به آببران در حالت همکارانه و غیرهمکارانه(MCM)………………………….. 76
جدول 6-3- حد بالا و پایین سود بازتوزیع شده توسط FVLC 81
 
 
 
 
 
 
 
 
 
 
 
فهرست شکل‌ها
 

صفحه

 
عنوان                                                                                         
 
شکل 4-1- موقعیت قرارگیری منطقه مورد مطالعه…. 39
شکل 4-2- منحنی سطح – حجم – ارتفاع مخزن سد….. 45
شکل 4-3- شکل شماتیک آببران کشاورزی منطقه مورد مطالعه    42
شکل 5-1- ساختار مدل پیشنهادی………………. 52
شکل 6-1- عملکرد مخزن در سناریو ترسالی……… 70
شکل 6-2- عملکرد مخزن در سناریو نرمال………. 70
شکل 6-3- عملکرد مخزن در سناریو خشک………… 71
شکل 6-4- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببراول) 72
شکل 6-5- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببردوم) 72
شکل 6-6- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببرسوم) 73
شکل 6-7- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببرچهارم)……………………………………….. 73
شکل 6-8- تغییرات TDS در نقاط کنترل کیفی در حالت خشکسالی 74
شکل 6-9- مقایسه سود حاصل از تخصیص همکارانه وغیرهمکارانه در سناریو خشک…………………………………….. 75
شکل 6-10- مقایسه نسبت تأمین نیاز آببر سوم در حالت نرمال و حالتی که TDS در آورد رودخانه حداکثر است، در سناریو نرمال    80
شکل 6-11- مقایسه مقدار رها شده از مخزن در حالت نرمال و حالتی که آورد رودخانه %80 کاهش یافته است، در سناریو نرمال 80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

مقدمه

 
 

1-1- مقدمه

 
رشد جمعیت و شهرنشینی، افزایش تولیدات کشاورزی و تغییرات آب و هوا از یک سو وکمبود منابع آب شیرین در دسترس از سوی دیگر باعث شده است نحوه­ بهره ­برداری بهینه از منابع آب، بحثی چالش برانگیز باشد. در چند دهه اخیر نظر سیاستگزاران و تصمیم­ گیران بخش آب با توجه به افزایش رقابت بر سر آب در میان فعالیت­های مختلف انسانی و تأثیر آن بر محیط‌زیست و پرهیز از تصمیم­ گیری­ هایی در زمینه تخصیص آب که در آینده پاسخ­گویی به آن با مشکل مواجه شود، به سوی توسعه سیاست­های پایدار در تخصیص منابع آب، جلب شده است. به همین علت رویکرد برنامه‌ریزی مبتنی بر مدیریت عرضه[2] که با هدف بیشینه‌سازی عرضه آب برای تقاضاهای آبی عمل می‌کند، امروزه جای خود را به رویکردهایی داده است که عواملی مانند کیفیت آب، عدالت، سود اقتصادی و پایداری در سیستم را در نظر می­گیرد (Zheng et al., 2011). در نظر گرفتن این عوامل در روند تخصیص منابع آب، لحاظ عدم‌قطعیت‌های موجود در عوامل مذکور و وجود ذینفعان متعدد در یک حوضه آبریز باعث می‌شود اعمال یک رویکرد جامع و پایدار در بهره ­برداری از منابع آبی حوضه آبریز، امری پیچیده و دشوار باشد.
در این پایان نامه مدل کمی و کیفی جهت تخصیص آب در سیستم­های رودخانه-مخزن در قالب یک مدل بهینه‌سازی ریاضی فرمولبندی و پیشنهاد گردیده است. این مدل، امکان تصمیم‌گیری در مورد مقدار تخصیص آب به متقاضیان را با لحاظ اثرات بلندمدت خصوصیات هیدرولوژیکی، اقتصادی و زیست‌محیطی، در قالب سه معیار عدالت[3]، بهره­وری[4] و پایداری[5]، با در نظر گرفتن عدم‌قطعیت در پارامترهای هیدرولوژیکی و اقتصادی را برای دست‌اندرکاران بخش آب فراهم می­نماید.
در این مدل ابتدا با رویکرد تخصیص همزمان كمی و كیفی آب، براساس سه شاخص یاد شده تلاش شده است، ضمن تخصیص بهینه آب بین آببران، بار آلودگی وارد‌شده توسط آن‌ ها که متأثر از مقدار آب تخصیص داده شده است، به گونه­ ای باشد كه استانداردهای زیست‌محیطی نیز تأمین شود. سپس با رویکرد تئوری بازی‌ها، مدلی به منظور تخصیص كمی و كیفی منابع آب ارائه می‌گردد که بتواند ضمن توجه به مطلوبیت‌های طرف‌های درگیر و جلب رضایت آنها، سود حاصل در سیستم حداکثر شود. در مدل­های ارائه شده عدم‌قطعیت موجود در پارامترهای هیدرولوژیکی و اقتصادی به ترتیب با بهره گرفتن از روش بهینه­سازی سناریوها و مدل بازی FVLC[6] لحاظ شده ­اند. این مدل­های بهینه­سازی در محیط نرم­افزار [7]GAMS کدنویسی شده‌اند.
 
 

1-2- اهمیت مسئله

 
بشر تقریباً‌ یک درصد كل آب روی زمین را مورد بهره‌برداری قرار می‌دهد كه به صورت آب‌های سطحی (جویبارها، رودخانه‌ها و دریاچه‌ها) و یا آب‌های زیرزمینی (چشمه و چاه) است و همین مقدار اندک پراکنشی نا­متناسب دارد. با توجه به توزیع نامناسب زمانی و مکانی بارندگی و همچنین ناکافی بودن ریزش‌های جوی (متوسط بارندگی 250 میلی متر)، ایران در رده کشورهای خشک و نیمه خشک جهان دسته بندی می‌گردد. با چنین اقلیمی، ایران کشوری است که سهم کمتری از همین مقدار اندک منابع آب می‌برد. افزایش جمعیت (از 10 میلیون نفر در سال 1925 به 68 میلیون نفر در سال 2005)، توسعه بهداشت، کشاورزی و صنایع نیز افزایش تقاضای آب را در پی داشته است. این در حالی است که الگوهای مدیریتی و رفتاری ما در مصرف همین منابع ناچیز به گونه‌ای است که گویی مشکلی در این باره وجود ندارد؛ چنانچه در گزارش سال 2007 بانک جهانی، سرعت کاهش منابع آب شیرین در ایران 6 برابر میانگین جهانی عنوان شده است. منابع آب شیرین برای برآوردن نیازهای اولیه انسان، جنبه‌ای حیاتی دارد و حفاظت ناکافی از کیفیت و کمیت این منبع حیاتی منجر به پدید آمدن محدودیت‌های جدی در فرایند توسعه پایدار می‌شود و از این رو استفاده بهینه کمی و کیفی از منابع آب موجود امری اجتناب ناپذیر است. بهره‌برداری بهینه‌ از منابع آب به عنوان یکی از مسائل پایه در تحلیل سیستم‌های منابع آب در چند دهه گذشته مورد توجه محققین قرار داشته است که از عمده‌ترین دلایل آن می­توان به ارزش اقتصادی حاصل از بهره‌برداری بهینه از منابع آب، افزایش نیازهای آبی و کمبود منابع آب در دسترس اشاره کرد. از طرفی كیفیت آب نیز از پارامترهای مهمی است كه بسته به مورد استفاده، از طریق ارگان­های مختلف دارای محدودیت‌هایی است. بدین معنی كه برای مصارف مختلف استانداردهای مختلفی برای كیفیت آب تعیین گردیده است از اینرو كیفیت آب نیز از پارامترهای تعیین كننده در تعیین سیاست بهره‌برداری از منابع آب موجود است (مجرد، 1391).
باتوجه به نیاز کشاورزی بیش از 94 درصد از کل مصرف آب در بخش کشاورزی می­باشد. استان فارس یکی از مهمترین استانهای کشور در تولید محصولات کشاورزی می­باشد و با توسعه کشاورزی در این استان و با توجه به نیاز هرچه بیشتر به آب، توجه سیاستگزاران و تصمیم‌گیران بخش آب بیش از پیش به سمت نحوه مدیریت منابع آب این استان جلب شده است (مجرد، 1391).
منطقه داراب با دارا بودن پتانسیل بالقوه­ای که در زمینه کشاورزی دارد، از قدیم یکی از قطب‌های بزرگ کشاورزی و باغداری در استان فارس بوده است. رودخانه رودبال به عنوان اصلی­ترین منبع آب سطحی در این منطقه می­باشد. متأسفانه در سال­های اخیر با توجه به خشکسالی،­ آب رودخانه به شدت کاهش یافته و کشاورزان برای تأمین نیاز خود دست به حفر چاه­های عمیق و نیمه عمیق متعددی در دشت داراب زده­اند و با برداشت بیش از حد و غیر اصولی باعث شده ­اند امروز دشت داراب یکی از دشت­های ممنوعه ­باشد. سازمان آب جهت کنترل آب­های سطحی در این منطقه و بهبود شرایط، سد مخزنی رودبال را بر روی رودخانه رودبال احداث نموده است (مهندسین مشاور آب نیرو، 1390). حال با توجه به شرایط منطقه و اهمیت موضوع، تخصیص بهینه و کنترل شده منابع آب در سیستم مخزن-رودخانه رودبال امری ضروری است.
 
 

1-3- هدف

 
یكی از موارد مهم در بحث بهره‌برداری كمی وكیفی از منابع آب موجود،که تاکنون در بهره برداری بهینه کمی و کیفی از سیستم رودخانه-مخزن مورد توجه قرار نگرفته است، برداشت بهینه از سیستم رودخانه-مخزن براساس سه معیار عدالت، پایداری و بهره­وری می­باشد. به همین دلیل هدف اصلی در این پایان نامه ارائه مدلی بوده است که تخصیص بهینه از سیستم رودخانه-مخزن براساس سه معیار ذکر شده را با لحاظ عدم‌قطعیت­ها مشخص کند. در راستای رسیدن به این مقصود، براساس مطلوبیت­ها و محدودیت­های موجود مدلی جهت شبیه­سازی و بهینه­سازی تخصیص منابع آب در محیط برنامه­نویسی GAMS تهیه و سعی شده است مدل به گونه­ ای فرمولبندی شود که در جواب بهینه حاصل معیارهای یاد شده تا حد امکان رعایت شود. هدف دیگر در این پایان نامه ، ارائه الگوهای تخصیص عادلانه و كارای آب، به گونه­ ای که ضمن حفظ كیفیت آب و عدم تخطی از استاندارد کیفیت آب، منافع حاصله از تخصیص آب نیز حداكثر گردد. بدین منظور براساس تئوری بازی‌ها ابتدا ائتلاف­های ممکن بین آببران شکل گرفته و سپس مدلی ارائه گردیده است که علاوه­بر در نظر گرفتن سه معیار ذکر شده، تخصیص به هر یک از آببران را با هدف حداکثر سازی سود اقتصادی حاصل در ائتلاف انجام دهد. در نهایت از بازی همکارانه FVLC جهت بازتوزیع سود حاصل در ائتلاف­ها استفاده شد.
 
 
 

1-4- سؤالات اساسی تحقیق

 
در بخش قبل اهداف اصلی پایان نامه تشریح گردیدند. سؤالات اصلی که در قالب مطالعات انجام شده در این تحقیق پاسخ داده شده‌اند، به شرح زیر می‌باشند:
– آیا می‌توان بر پایه سیاست­های بهینه به دست آمده از مدل بهینه‌سازی تخصیص کمی وکیفی آب، قوانین تخصیص در زمان واقعی را تدوین کرد؟
– آیا درنظر گرفتن عدم‌قطعیت­ها در افزایش بهره­وری سیستم مؤثر است؟
– در مدیریت تخصیص کمی و کیفی آب در سیستم رودخانه-مخزن آیا تلفیق مدل‌های تخصیص کمی و کیفی آب می‌تواند در افزایش بهره‌وری سیستم مؤثر باشد و منجر به بهبود وضعیت كیفیت آب گردد؟
 
 

1-5- فرض­های ساده­کننده تحقیق

 
در این تحقیق فرض‌های زیر درنظر گرفته شده است:
– در منطقه مورد مطالعه فرض شده است امکان عدم تأمین نیاز شرب و صنعت در طی تمام زمان برنامه ­ریزی وجود ندارد. لذا تأمین نیاز این دو بخش به صورت صد در صد صورت پذیرفته است.
– روستاهای حقابه­بر، به منظور مدیریت تخصیص آب، گروه­بندی شده ­اند و در نهایت چهار آببر به عنوان آببر کشاورزی درنظر گرفته شده است.
– فرض گردیده است مخزن سد به صورت یک تانک با اختلاط کامل عمل می­ کند.
 
 

1-6- نوآوری­های تحقیق

 
نوآوری­های این تحقیق در زمینه مدلسازی تخصیص آب به صورت زیر قابل بیان است:
1- مدلسازی کمی و کیفی سیستم­های رودخانه-مخزن با لحاظ سه شاخص پایداری، عدالت و بهره­وری.
2- بازتوزیع منافع حاصل از تخصیص کمی و کیفی با تدوین مدل بازی همکارانه FVLC
3- به کارگیری شاخص SPI[8] جهت سناریوسازی در روند تحلیل سناریوها
4- تدوین مدل بهینه­سازی سناریویی تخصیص کمی وکیفی آب
 
 

1-7- ساختار پایان نامه

 
این پایان‌نامه در چهارچوب هفت فصل ارائه شده است. در فصل حاضر کلیات مرتبط با پایان‌نامه مورد بررسی قرار گرفته است. در فصل بعد بر کارهای پیشین و تحقیقات صورت گرفته در زمینه تخصیص کمی وکیفی آب و به کارگیری تئوری بازی‌ها در تخصیص منابع آب انجام گرفته است. نحوه عملکرد نرم‌افزارها و روش­های به کار گرفته شده در روند مدلسازی، در فصل سوم ارائه شده است. در این تحقیق مورد مطالعاتی جهت ارزیابی مدل ارائه شده، حوضه رودخانه رودبال می­باشد. مشخصات محدوده مذکور در فصل چهار مورد بررسی قرار گرفته است. ساختار مدل به کار گرفته شده و نتایج حاصل از کارگیری مدل در منطقه مورد مطالعه به ترتیب در فصل پنج و شش تشریح شده است. در نهایت در فصل هفتم نیز نتیجه ­گیری و پیشنهادات برای ادامه­ تحقیق ارائه شده است.
 
[1]Fuzzy Variable Least Core
[2] Supply Management
Equity

موضوعات: بدون موضوع  لینک ثابت
 [ 07:27:00 ب.ظ ]




 
 
 
 
 
 
فهرست مطالب
 
 
عنوان                                         صفحه
 
فصل اول: مقدمه
1-1- کلیات…………………………….. 2
1-2- انواع سرریز ………………………. 3
1-3- هدف تحقیق ………………………… 5
1-4- اهمیت تحقیق……………………….. 7
1-5- نو آوری…………………………… 8
1-6- گفتار های پایان نامه……………….. 8
 
فصل دوم: مروری بر تحقیقات گذشتگان
2-1-کلیات……………………………… 11
2-2- سازه های ریزشی…………………….. 11
2-2-1- مکانیزم برخورد درسازه های برخوردی… 14
2-3 -سازه های ریزشی گردابی………………. 19
2-3-1- سازه ورودی…………………….. 20
2-3-2- معادله دبی…………………….. 20
2-3-3- شفت ریزشی گردابی با تیغه های راهنما. 21
2-3-3-1- جریان در شفت………………… 22
 
فصل سوم: شفت دندانه ای
3-1- کلیات…………………………….. 28
3-2- ساختار سرریز شفت دندانه ای………….. 29
 
عنوان                                         صفحه
 
فصل چهارم: ساختار آزمایشی تحقیق
4-1- کلیات…………………………….. 31
4-2- سیمای مجموعه آزمایشگاهی…………….. 32
4-3- تجهیزات اندازه گیری………………… 36
4-3-1 فلومتر الکترو مغناطیسی فلنجی مگاب 3000    36
4-3-2- دور سنج لیزری………………….. 37
4-3-3- چرخ آبی مدور…………………… 37
4-3-4- پیزومتر مخزن آرامش در بالا دست شفت سرریز  38
4-3-5- دور سنجی چرخ آبی در ابتدای خروجی شفت 38
4-4- مدلهای هیدرولیکی……………………………………………………………………………………. 39
4-5- آنالیز ابعادی و تعیین پارامترهای موثر………………………………………………………………………………………. 53
4-6- روش چرخ آبی مدور و کالیبراسیون آن به منظور ارزیابی جریان دوفازی………………………………… 56
4-7- سرعت دورانی چرخ آبی و ارتباط آن با استهلاک انرژی  58
4-8- محاسبه انرژی با قیمانده جریان در خروجی سرریز و میزان استهلاک
انرژی در هر مدل………………………… 68
4-10- زمان تحقیق……………………….. 70
 
فصل پنجم: تجزیه و تحلیل نتایج
5-1- کلیات…………………………….. 72
5-2- ارزیابی میزان استهلاک انرژی شفت دندانه ای و بررسی کارایی آن……………………………………. 73
5-2-1- بررسی و مقایسه مدلها از نظر هیدرولیکی. 99
5-3- نتایج حاصل از مقایسه مدلهای مختلف با یکدیگر جهت ارائه
طرح بهینه……………………………… 102
5-4-پوشهای جریان در مدلهای مختلف…………. 104
 
فصل ششم: نتیجه گیری و پیشنهادات
6-1- نتیجه گیری………………………… 119
6-2- پیشنهادات…………………………. 120
 
فهرست منابع و مأخذ……………………….. 121
 
 
 
فهرست جدول ها
 
 
عنوان                                         صفحه
 
جدول 4-1: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 1 44
جدول 4-2: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 2 48
جدول 4-3: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 3 ……………………………………….. 52
جدول 4-4: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت بدون دندانه ……………………………………….. 52
جدول 4-5 : رابطه دبی و عمق متوسط در کانال با شیب 3%……………………………………….. 59
جدول 4-6 : رابطه دبی و عمق متوسط در کانال با شیب 5%……………………………………….. 60
جدول 4-7 : رابطه دبی و عمق متوسط در کانال با شیب 8%……………………………………….. 61
جدول 4-8 : رابطه دبی و عمق متوسط در کانال با شیب 10%……………………………………………………. 62
جدول 4-9 : رابطه دبی و عمق متوسط در کانال با شیب 13.8%….. 63

پایان نامه

 

جدول 4-10 : مشخصات هیدرولیکی جریان برای حالت فاصله چرخ آبی از کف
کانالmm 6-کل دبیها و شیبها……………….. 64
جدول 4-11 : مشخصات هیدرولیکی جریان برای حالت فاصله چرخ آبی از کف
کانالmm 30-کل دبیها و شیبها………………. 65
جدول 4-12 : مشخصات هیدرولیکی جریان برای هر دو حالت فاصله چرخ آبی از
کف کانال 6 و30 میلیمتر-کل دبیها و شیبها…… 66
ادامه جدول 4-12 : مشخصات هیدرولیکی جریان برای هر دو حالت فاصله
چرخ آبی از کف کانال 6 و30 میلیمتر-کل دبیها و شیبها 67
جدول 4- 13: زمان و نیروی کار صرف شده در این پژوهش  70
جدول 5-1: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 74
جدول 5-2: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 75
 
عنوان                                         صفحه
 
جدول 5-3: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 76
جدول 5-4: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 77
جدول 5-5: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 78
جدول 5-6: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 79
جدول 5-7: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 80
جدول 5-8: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 81
جدول 5-9: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست شکل ها
 
 
عنوان                                         صفحه
 
شکل 1-1 : انواع اصلی سرریز………………… 3
شکل 1-2: اتصال بین سرریز مستقیم و استهلاک کننده انرژی   4
شکل 1-3: سرریز پله-حوضچه ای……………….. 4
شکل 1-4: اتصال بین سرریز و پایاب…………… 5
شکل 1-5: فرم کلی سرریز پیشنهادی…………… 6
شکل 2-1: انواع جریان در آبشار ریزشی در کانال منشوری مستطیلی 12
شکل 2-2: سازه ریزشی توسعه یافته…………… 12
شکل 2-3: ریزش جت در یک حوضچه با کف افقی……. 15
شکل 2-4: ضربه جت………………………… 16
شکل2-5: a) جت برخوردی محدود شده از جوانب b) زاویه برخورد δi 17
شکل 2-6: شمای کلی شفت ریزشی آبشاری در Roman aqueduct
و3 رژیم مختلف شکل گرفته در آن……………… 18
شکل 2-7: طرح Vortex drop……………………… 19
شکل 2-8: شفت گردابی………………………. 21
شکل 2-9: المانهای ایجاد کتتده بالشتک آبی مناسب 24
شکل 2-10: طرح مدل آزمایش شده سازه جدید ریزشی گردابی توسط    25
شکل 4-1: سیستم آزمایشگاهی شفت دندانه ای به صورت شماتیک همراه با جزئیات………………………………….. 33
شکل 4-2 : تصویر سیستم آزمایشگاهی- دید از عقب و راست……………………………………. 33
شکل 4-3 : تصویر سیستم آزمایشگاهی- دید از عقب و چپ  34
شکل 4-4 : تصویر سیستم آزمایشگاهی- دید از عقب . 34
شکل 4-5 : تصویر سیستم آزمایشگاهی- دید از جلو… 35
 
عنوان                                         صفحه
 
شکل 4-6 : تصویر سیستم آزمایشگاهی- دید از جلو و راست…  35
شکل 4-7 : تصویر سیستم آزمایشگاهی- دید از جلو و چپ  36
شکل 4-8 : فلومتر الکترو مغناطیسی فلنجی مگاب 3000   37
شکل 4-9: دور سنج لیزری……………………. 37
شکل 4-10 : چرخ آبی مدور استفاده شده از نماهای مختلف 38
شکل 4-11 : پیزومتر مخزن آرامش در بالا دست شفت سرریز 38
شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلان
الف) با6 دندانه با رویه 35*30 سانتی متری   ب) با 8 دندانه با رویه 3*30 سانتیمتری
پ) با 10دندانه با رویه 35*30 سانتیمتری……. 41
ادامه شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلانالف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه 30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 42
ادامه شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلان الف) با
8 دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری پ) با
12 دندانه با رویه 25*30 سانتیمتری…………. 43
شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 6
دندانه با رویه 35*30 سانتی متری ب) با 8 دندانه با رویه 35*30 سانتیمتری پ) با 10
دندانه با رویه 35*30 سانتیمتری…………….. 45
ادامه شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 46
ادامه شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 8
دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری پ) با 12
دندانه با رویه 25*30 سانتیمتری…………….. 47
شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف) با 6
دندانه با رویه 35*30 سانتی متری ب) با 8 دندانه با رویه 35*30 سانتیمتری پ) با 10
دندانه با رویه 35*30 سانتیمتری…………….. 49
ادامه شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه 30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 50
عنوان                                         صفحه
 
ادامه شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف)
با 8 دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری
پ) با 12 دندانه با رویه 25*30 سانتیمتری……. 51
شکل 4-15: مدل با شفت قائم 65*30 سانتی متر در پلان بدون دندانه……………………………………….. 52
شکل 4-16 : ماکزیمم ارتفاع موثر بر سرعت دورانی چرخ  58
شکل 4-17: رابطه دبی بر حسب عمق در کانال با شیب 3%  59
شکل 4-18 : رابطه دبی بر حسب عمق در کانال با شیب 5% 60
شکل 4-19 : رابطه دبی بر حسب عمق در کانال با شیب 8% 61
شکل 4-20 : رابطه دبی بر حسب عمق در کانال با شیب 10% 62
شکل 4-21 : رابطه دبی بر حسب عمق در کانال با شیب8/13%    63
شکل 4-22 : رابطه دور بر دقیقه چرخ آبی با مربع سرعت جریان در دو حالت فاصله
چرخ از کف کانال………………………….. 65
شکل 4-23 : رابطه دور بر دقیقه چرخ آبی با مربع سرعت جریان در کل دبیها و شیبها
و فواصل مختلف چرخ آبی از کف کانال ………… 68
شکل 5-1 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 65*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری
(6، 8 و 10 دندانه) ب) بادندانه های30 سانتی متری (6، 8 و 10 دندانه) پ) با
دندانه های 25 سانتی متری (8، 10 و 12دندانه… 83
شکل 5-2 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 55*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری
(6، 8 و 10 دندانه) ب) با دندانه های 30 سانتی متری (6، 8 و 10 دندانه) پ) با
دندانه های 25 سانتی متری (8، 10 و 12 دندانه).. 84
شکل 5-3 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 45*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری (6، 8 و 10 دندانه)
ب) بادندانه های 30 سانتی متری (6، 8 و 10 دندانه) پ) با دندانه های 25 سانتی متری
(8، 10 و 12 دندانه)……………………… 86
شکل 5-4 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 65*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند…………………………………… 87
 
عنوان                                         صفحه
 
شکل 5-5 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 55*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند………………………………….. 88
شکل 5-6 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 45*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند……………    88
شکل 5-7 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک را در هر سه سایز شفت (65*30 ، 55*30 و 45*30
سانتیمتری) در هر 3 نوع دندانه (35، 30 و 25 سانتیمتری) را دارند……………………………………….. 89
شکل شماره 5-8: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت با
اندازه 65*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری ب) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ)با 10 دندانه در اندازه های 35، 30 و 25 سانتیمتری………………………………. 90
شکل شماره 5-9: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت
با اندازه 55*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری ب) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ) با 10 دندانه در اندازه های 35، 30 و 25 سانتیمتری………………………………. 91
شکل شماره 5-10: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت
با اندازه 45*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری پ) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ) با10 دندانه در اندازه های 35، 30 و 25 سانتیمتری…   93
شکل شماره 5-11: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت سه سایز
مختلف شفت (65*30، 55*30 و 45*30 سانتیمتری) با تعداد دندانه های مساوی
و هم اندازه الف) با 6 دندانه 35 سانتیمتری ب) با 8 دندانه 35 سانتیمتری
پ) با 10 دندانه 35 سانتیمتری………………. 95
شکل شماره 5-12: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت سه سایز
مختلف شفت (65*30، 55*30 و 45*30 سانتیمتری) با تعداد مساوی دندانه های 30
سانتی متری الف) با 6 دندانه 30 سانتیمتری ب) با 8 دندانه 30 سانتیمتری
پ) با 10 دندانه30 سانتیمتری………………. 96
 
عنوان                                         صفحه
 
شکل شماره 5-13: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت
سه سایز مختلف شفت(65*30، 55*30 و 45*30 سانتیمتری) با تعداد مساوی
دندانه های 25 سانتی متری الف) با 8 دندانه 25 سانتیمتری ب) با 10 دندانه 25
سانتیمتری پ) با 12 دندانه 25 سانتیمتری……. 98
شکل 5-14: پوش جریان برای مدل شماره 1 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 35*30 سانتی متری در دبی 5 لیتر در ثانیه – جریان از نوع 1 ……………………………………… 105
شکل 5-15: پوش جریان برای مدل شماره 1 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 35*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 105
شکل 5-16: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 106
شکل 5-17: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 106
شکل 5-18: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 107
شکل 5-19: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 107
شکل 5-20: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 108
شکل 5-21: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 108
شکل 5-22: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 109
شکل 5-23: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 109
شکل 5-24: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 110
شکل 5-25: پوش جریان برای مدل شماره 7 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 110
شکل 5-26: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمتر و 12 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 (ریزش از وسط) …………………………… 111
عنوان                                         صفحه
 
شکل 5-27: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمترو 12 دندانه
با رویه 25*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 1 ……………………………………… 111
شکل 5-28: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمترو 12 دندانه
با رویه 25*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 در دندانه های
بالایی و نوع 1 در دندانه های پایینی ……….. 112
شکل 5-29: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 113
شکل 5-30: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 113
شکل 5-31: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 1 ……………………………………… 114
شکل 5-32: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 2 ……………………………………….. 114
شکل 5-33: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 و تاحدودی 3 …………………………… 115
شکل 5-34: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 35 لیتر در ثانیه- جریان از نوع 3 …………………………………….. 115
شکل 5-35: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 و تا حدودی2 …………………………….. 116
شکل 5-36: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمترو 8 دندانه
با رویه 25*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 116
شکل 5-37: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 35 لیتر در ثانیه- جریان از نوع2 و تا حدودی 3 ……………………………. 117
 
 
 
 
 
 
 
 
 
فهرست علائم اختصاری
 
 
Ca: غلظت مکانی هوا، که به صورت نسبت واحد حجم هوا به واحد حجم مخلوط آب و هوا تعریف می شود
Cmean: غلظت متوسط هوای جریان که بر حسب عمق متوسط گیری شده است
d: عمق جریان
D: قطر شفت
dc: عمق بحرانی جریان
dw: عمق معادل ستون آب خالص (بدون هوا)
Eδ مقدار انرژی تلف شده در طول سرریز
e: عدد نپر
ΔE: تغییرات ارتفاع (بلندای) کل انرژی جریان
E: ارتفاع (بلندای) کل انرژی جریان
E0: انرژی کل جریان در بالادست سرریز (داخل مخزن) نسبت به تراز کف خروجی سرریز
F: عدد فرود
g: شتاب جاذبه زمین
h: عمق جریان در بالا دست
H: فاصله قائم تراز کف ورودی سرریز در بالا دست تا تراز کف خروجی سرریز
Hdam: ارتفاع سد یا سرریز سد
L طول روی هر دندانه (پله) در جهت جریان
λ: ضریب مقیاس (λ=lp/lm نسبت ابعادی نمونه اصلی به مدل)
μw : لزجت دینامیکی آب
Q: دبی کل جریان
QD: دبی طراحی
q: دبی جریان در واحد عرض
R: شعاع هیدرولیکی
Re: عدد رینولدز
Sf : شیب اصطکاکی
ρ: جرم حجمی
wρ: جرم حجمی آب
σ: کشش سطحی آب
Uw: سرعت متوسط جریان
V : سرعت متوسط جریان
W: عرض سرریز
We: عدد وبر
y: عمق متوسط جریان در خروجی سرریز
z : فاصله بین هر دو دندانه متوالی
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
فصل اول
 
 
 
 
 
 

 

 
 
 
 
 
مقدمه
 
 
1-1-کلیات
 
در طراحی سد باید اصول هیدرولیک رعایت شود تا پایداری سد به خطر نیافتد. از جمله این اصول ساخت سرریزی متناسب با سد مورد نظر جهت تخلیه آب اضافی از مخزن می باشد. سرریز عبارت است از سازه ای که آب اضافی را خصوصاً در زمان های سیلابی که جریان آب برای بدنه سد و تاسیسات وابسته خطر ایجاد می کند و ممکنست باعث خرابی آنها شود، دفع کند و به همین سبب ضرورت دارد که سرریزی جهت دفع سیلاب و محافظت از سد و تاسیسات وابسته در نظر گرفته شود.
سرریزها به انواع مختلف تقسیم بندی می شوند. انتخاب نوع سرریز بستگی به فاکتورهایی از قبیل: نوع سد، دبی طرح، وضعیت فونداسیون، توپوگرافی و شرایط اقتصادی طرح دارد. سرریزهایی که در بدنه خود سد وزنی بتنی ساخته می شود، از نوع سرریزهای روگذر[1] می باشند. این نوع سرریز ممکن است همراه سدهای قوسی یا پایه دار نیز به کار برده شود. انواع دیگر سرریزها که به صورت جدا از بدنه سد طراحی می شوند عبارتند از: سرریز جانبی[2]، سرریز نیلوفری[3]، سرریز شوت[4] و سرریز سیفونی[5]. انواع دیگری از سرریزها نیز وجود دارند که به همراه سدهای کوچک به کار برده می شوند و قدرت دفع دبی اندکی دارند این سرریزها عبارتند از: سرریز با ورودی قائم[6] وسرریز با ورودی جعبه ای[7]. به طورکلی در طراحی سرریز سد، دبی طرح با دوره بازگشت معین انتخاب می شود که بستگی به اهمیت طرح دارد. سرریز باید قادر باشد دبی طرح را در موقع سیلابی به طریقی دفع کند که صدمه ای به بدنه سد وارد نگردد.[1]
 
 
 
1-2- انواع سرریز [2]
 
سازه روگذر یا سرریز را بسته به شرایط محل و خصوصیا ت هیدرولیکی به صورتهای مختلفی می توان طراحی کرد مانند:

  • سرریز جلویی[8] ( مستقیم )
  • سرریز جانبی[9]
  • سرریز لاله ای[10]

 
 
 
 
 
 
 
شکل 1-1 : انواع اصلی سرریز: a) مستقیم، b) جانبی، c) لاله ای. [2]
 
در سازه های دیگری مانند سرریز کنگره ای[11] از سرریز مستقیم استفاده میشود که تاج آن در پلان به شکل مثلثی یا ذوزنقه های متوالی است. نوع دیگر آن، سریز روزنه ای[12] است که در سدهای قوسی استفاده می شود.
سرریز لاله ای در سال 1930 معرفی و اقتصادی بودن آن ثابت شده است، مشروط به آنکه تونل انحراف را بتوان به عنوان مجرای افقی این سرریز استفاده کرد. سازه این سرریز شامل سه قسمت اصلی است که عبارت است از : آبگیر، مجرای عمودی با یک زانوی 90 درجه و یک تونل تقریباً افقی. به منظور جلو گیری از خسارت ناشی از کاویتاسیون، هوا از طریق مجرای هواده در محل تبدیل بین مجرای عمودی و تونل افقی تامین می شود
استفاده از سرریز جانبی در مناطقی که استفاده از سرریز مستقیم عملی نیست، مانند سدهای خاکی یا وقتی که موقیعت دیگری در کنار سد ارتباط بهتر و آسانتری را با حوضچه آرامش امکان پذیر می سازد، مناسب است.
سرریز مستقیم ( اوجی[13]) به دلیل ساده بودن و امکان برقراری ارتباط مستقیم مخزن با پایاب، سرریز استانداردی است که بیشتر مورد استفاده قرار می گیرد. این نوع سرریز را معمولا می توان در هر دو نوع سد قوسی و وزنی استفاده کرد.
قسمت پایین دست سرریز مستقیم ممکن است شکلهای مختلفی داشته باشد. معمولا یک مجرایی ( شوت یا تنداب ) به تاج سرریز متصل می شود و به عنوان سازه انتقالی بین تاج سرریز و سازه استهلاک کننده انرژی عمل میکند (شکل a-2). همچنین این سرریز را می توان روی سد قوسی ساخت در این حالت جریان عبوری از روی آن به پایاب می ریزد، در این حالت دیوار پایین دست سرریز، همان وجه پایین دست سد است(شکل b-2). در نوع دیگری از طراحی، از سرریزهای متوالی[14] ( پلکانی ) استفاده می شود که در آن، استهلاک انرژی از انتهای تاج تا محل پایاب ( در کل طول سرریز ) صورت می گیرد و بدین ترتیب از طول حوضچه آرامش می توان کاست (شکل c-2)، همچنین نوع جدیدی از سرریز پلكانی با عنوان سرریز پله-حوضچه ای، با الهام از فرایند طبیعی فرم پله حوضچه ای در بستر رودخانه های كوهستانی با شیب زیاد، با رویكرد افزایش مطمئن زبری شكل بستر نیز ارائه گردیده است (شکل 3) [3].
 
[1] – Overflow spillways
[2] – Side spillways
[3] – Morning glory spillways
[4] – Concrete chute spillways
[5] – Siphon spillways
[6] – Drop inlet spillways
[7] – Box inlet spillways
[8] – Frontal overflow
[9] – Side channel overflow

موضوعات: بدون موضوع  لینک ثابت
 [ 07:26:00 ب.ظ ]