داده کاوی: مقدمه

بطور خلاصه داده کاوی[۱] عبارت است از کاوش یا استخراج دانش در مجموعه عظیمی از داده ها. ‫رشد روز افزون داده در شاخه های مختلف صنعت و علوم باعث شده است تا از کامپیوتر و علوم مربوط به آن جهت پردازش این حجم بالا از داده ها استفاده شود. بطور کلی هدف از پردازش داده ها، استخراجاطلاعات و دانش از آنها به گونه ای است که بتوان در علوم و کاربردهای دیگر از آنها استفاده نمود. کاوشداده عبارت است از اعمال روش های مبتنی بر کامپیوتر جهت استخراج دانش از روی داده های خام. در‫سالهای اخیر روش های مختلف و متنوعی جهت کشف و استخراج دانش از روی داده های خام ارائه شده‫است. دانش مزبور پس از استخراج شدن قابل ارزیابی توسط اشخاص خبره می باشد. با توجه به ارزیابی‫افراد خبره و همچنین روش های موجود در بررسی کیفیت دانش استخراج شده، این امکان وجود دارد تا ‫کارآیی الگوریتم کاوشگر دانش مورد مطالعه و بررسی قرار گیرد.,[۴] [۲۵]

‫۲-۲) داده کاوی: مفاهیم کلی

‫بطور کلی علوم و مهندسی بر اساس مدلهای علمی اولیه سعی در توصیف انواع مختلف سیستم ها می کنند. این توصیفها معمولا با یک مدل علمی اولیه مانند قوانین نیوتن در حرکت یا معادلات ماکسول در الکترومغناطیس آغاز شده و سپس بر اساس مدل بکار رفته مسائل مختلفی در مهندسی مکانیک یا‫مهندسی برق مورد بررسی و آنالیز قرار میگیرد. از داده های آزمایشگاهی در اینگونه موارد جهت ارضاء‫مدلهای اولیه موجود استفاده میشود. در این راستا پارامترها و یا متغیرهایی که امکان محاسبه واندازه گیری آنها به طور مستقیم وجود ندارد و یا مشکل است تخمین زده می شوند. در علوم مختلفهمیشه امکان داشتن مدلهای اولیه ذکر شده وجود ندارد. همچنین بدست آوردن یک فرمول بندی ریاضی‫جهت واکشی یک مدل معمولا پیچیده و حتی در اکثر موارد امکان پذیر نمی باشد.

با رشد علم کامپیوتر و‫افزایش داده های متنوع در علوم مختلف، امکان استخراج مدلهای حاکم بر مسائل گوناگون از روی‫داده های مزبور میسر است.

‫نیاز به درک وقایع نهفته در حجم انبوهی از داده ها در زمینه های مختلف تجاری، علوم و مهندسی وجوددارد. در دنیای تجارت، داده های شرکت و مشتری به عنوان منابع اصلی تصمیم گیری شناخته می شوند. استفاده مناسب از داده های مزبور میتواند نقش تعیین کننده ای را در موفقیت و پیشرفت یک مجموعهتجاری ایفا کند.

فرایند استفاده از یک روش مبتنی بر کامپیوتر جهت استخراج دانش از داده های خام را میتوان یک تعریف کلی برای داده کاوی در نظر گرفت.

۱-۲-۲) اهداف مختلف داده کاوی به دو دسته زیر تقسیم بندیمیشوند:

۱-۱-۲-۲) پیش بینی[۲]: شامل استفاده کردن از برخی متغیرها یا فیلدها در مجموعه داده ها جهت پیش بینی مقادیر نامشخص میباشد.

 

‫۲-۱-۲-۲) توضیح یا توصیف[۳]: تمرکز این قسمت بیشتر بر روی استخراج الگوهای توصیف کننده مجموعه داده ها به گونه ای است که توصیف مزبور قابل درک و تفسیر به کمک انسان خبره باشد.

‫اهمیت هر کدام از اهداف فوق با توجه به کاربرد خاص داده کاوی متفاوت است.

۲-۲-۲)  کاربردهای مختلفداده کاوی در ادامه ارائه شده اند:

‫۱-۲-۲-۲) دسته بندی[۴]: هدف در دسته بندی، کشف یک مدل پیشگویی کننده به قسمی است که مدل مزبور توانایی دسته بندی یک داده ورودی را به یکی از مجموعه دسته های خروجی ممکن را دارا باشد.

‫۲-۲-۲-۲) رگرسیون[۵]: هدف در رگرسیون کشف یک مدل پیشگویی کننده با توانایی نگاشت یک نمونه داده ای به یک متغیر تخمینی است.

‫۳-۲-۲-۲) خوشه بندی[۶]: در خوشه بندی هدف یافتن مجموعه متناهی از دسته ها یا خوشه ها جهت توصیف داده ها می باشد.

  • ۲-۲-۲)خلاصه بندی[۷]: شامل روشهایی جهت یافتن توصیفی فشرده برای یک مجموعه داده می شود.
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...