کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



آخرین مطالب


جستجو


 



 

 

 

پایان نامه :بررسی عملکرد پل‌های بتنی با مقطع باکس پس‌کشیده تحت اثر بارهای ناشی از انفجار

مقالات و پایان نامه ارشد

 

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-02] [ 07:45:00 ب.ظ ]




فصل 2 – بر تحقیقات گذشته                                                               6
2-1 طراحی پلاستیک بر اساس عملکرد …………………………………………………………………………………   7
2-1-1 تحقیقات دکتر بیات (2010)   …………………………………………………………………………………….   7
2-1-2 تحقیقات ونگ چنگ لیا ( 2010 )……………………………………………………………………………….   7
2-2 روش های طراحی دیگر……………………………………………………………………………………………………….. 8
2-2-1 روش طیف نقطه تسلیم…………………………………………………………………………………………………   9
2-2-2 روش طراحی مستقیم بر اساس جابجایی…………………………………………………………………….   10
فصل 3 – مبانی طراحی پلاستیک بر اساس عملکرد و عملکرد لرزه ای                  12
3-1 معرفی………………………………………………………………………………………………………………………………..   13.
3-2 مراحل طراحی پلاستیک بر اساس عملکرد………………………………………………………………………   14
3-2 -1 مکانیزم تسلیم مطلوب و جابجایی هدف…………………………………………………………………….   16
3-2-2 تعیین پریود اصلی…………………………………………………………………………………………………………   17
3-2-3 برش پایه طراحی…………………………………………………………………………………………………………..   17
3-2-4 روش محاسبه C2…………………………………………………………………………………………………………   25
3-2-5 فاکتور ƞ……………………………………………………………………………………………………………………     30
3-2-6 نیرو های جانبی طراحی (بدون p-delta)……………………………………………………………..     31
3-2-7 طراحی اعضا تسلیم شونده……………………………………………………………………………………….     33
3-2-8 طراحی اعضا تسلیم نشدنی………………………………………………………………………………………    36
3-3 سطح عملکرد…………………………………………………………………………………………………………………..  39
3-4سطوح خطر لرزه ای…………………………………………………………………………………………………………  41
فصل 4  بررسی و تفسیر نتایج                                                                  42
4-1 معرفی………………………………………………………………………………………………………………………………   43
4-2 مشخصات ساختمان ها…………………………………………………………………………………………………..   43
4-2-1 مدل 4 طبقه PBPD RC SMF ……………………………………………………………………………..  46
4-2-2 مدل 8 طبقه PBPD RC SMF ……………………………………………………………………………..   57
4-2-3 مدل 12 طبقه PBPD RC SMF ………………………………………………………………………….   65
4-2-4 مدل 20 طبقه PBPD RC SMF …………………………………………………………………………..   73
4-3 سطح عملکرد…………………………………………………………………………………………………………………   83
4-3-1 بررسی عملکرد قاب 4 طبقه PBPB RC SMF……………………………………………………..   83
4-3-1-1 سطح خطر 1 (DBE)………………………………………………………………………………………….   84
4-3-1-2 سطح خطر2 (MCE)………………………………………………………………………………………….   86
4-3-1-3 زلزله بهره برداری………………………………………………………………………………………………..   87
4-3-2 بررسی عملکرد قاب 8 طبقه PBPB RC SMF…………………………………………………….   89
4-3-2-1 سطح خطر 1 (DBE)……………………………………………………………………………………….   89
4-3-2-2 سطح خطر2 (MCE)………………………………………………………………………………………   91
4-3-2-3 زلزله بهره برداری…………………………………………………………………………………………….   93
4-3-3 بررسی عملکرد قاب 12 طبقه PBPB RC SMF………………………………………………   94
4-3-3-1 سطح خطر 1 (DBE)……………………………………………………………………………………..   94
4-3-3-2 سطح خطر2 (MCE)……………………………………………………………………………………..   99
4-3-3-3 زلزله بهره برداری……………………………………………………………………………………………   102
4-3-4 بررسی عملکرد قاب 20 طبقه PBPB RC SMF………………………………………………   104
4-3-4-1 سطح خطر 1 (DBE)……………………………………………………………………………………..   104
4-3-4-2 سطح خطر2 (MCE)……………………………………………………………………………………..   108
4-3-4-3 زلزله بهره برداری……………………………………………………………………………………………   110
فصل5  نتیجه گیری و پیشنهادات                                                           113
1 نتیجه گیری     ………………………………………………………………………………….   114
2 پیشنهادات ………………………………………………………………………………………………………….   116
مراجع   ……………………………………………………………………………………………………………………………… 117
 
 
 
فهرست شکل ها                                                     صفحه
 
شکل 2-1 نمونه طیف نقطه تسلیم………………………………………………………………………………………..   9
شکل 3-1 مفهوم PBPD…………………………………………………………………………………………………………   13
شکل 3-2 مکانیزم تسلیم مطلوب قاب خمشی……………………………………………………………………..   16
شکل 3-3 پاسخ ایده آل شده سازه و مفهوم تعادل انرژی SDOF ……………………. … 18
شکل 3-4 طیف غیر الستیک ایده آل شده …… . . 21
شکل 3-5 ضریب اصلاح انرژی . ……………………………………… . 22
شکل 3-6 رابطه بین برش پایه ی PBPD و نرخ جابجایی هدف و پریود………………………………… 24
شکل 3-7 میانگین جابجایی نسبی مدل های SSD به EPP………………………………….. … . 26
شکل 3-8 محاسبه برش پایه طراحی محاسبه شده با متد C2………………… . ………….. . .29
شکل 3-9 رابطه بین برش پایه طراحی PBPD ، جابجایی هدف طراحی……. ………….. … 30
شکل 3-10 چرخه هسترتیک pinched . …………………………… . 31
شکل 3-11 قاب یک دهانه با مکانیزم طبقه نرم ……………………………………………………. . 35
شکل 3-12 دیاگرام آزاد درخت ستون خارجی … ……………………………………………. 37
شکل 3-13 قاب یک دهانه با مکانیزم طبقه نرم ……………………………………………. . 40
شکل 4-1 پلان ساختمان های طرح شده…………. …………………………………………………………… . 43
شکل 4-2 مدل 4 طبقه RC SMF…………. ……………………………………………… . …………….. . 45
شکل 4-3 مکانیزم تسلیم از پیش انتخاب شده برای RC SMF…………………. ………………. . 46
شکل 4-4 دیاگرام آزاد تیر ،ستون خارجی و ستون داخلی…………………………… …………………. . 52
شکل 4-5 دیاگرام لنگر خمشی ستون داخلی و خارجی…………………………… ……………………… . 55
شکل 4-6 دیاگرام لنگر خمشی ستون داخلی و خارجی………………………………. ………………….. . 62
شکل 4-7 دیاگرام لنگر خمشی ستون داخلی و خارجی………………………………. ………………….. . 70
شکل 4-8 دیاگرام لنگر خمشی ستون داخلی و خارجی……………………………… …………………… . 79
شکل 4-9 تشکیل مفصل پلاستیک در قاب…………………………… …………………………………………. . 84
شکل 4- 10منحنی pushover قاب 4 طبقه PBPD RC SMF(DBE)………… ………………. 85
شکل 4- 11 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………. . 86
شکل 4- 12منحنی pushover قاب 4 طبقه PBPD RC SMF(MCE)………. ……………….. 87
شکل 4-13 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………… . 88
شکل 4- 14منحنی pushover قاب 4 طبقه PBPD RC SMFبهره برداری……………………….. 88
شکل 4-15 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………… . 89
شکل 4- 16منحنی pushover قاب 8 طبقه PBPD RC SMF(DBE)………… ……………….. 90
شکل 4-17 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………….. . 91
شکل 4- 18منحنی pushover قاب 8 طبقه PBPD RC SMF(MCE)………. ……………….. 92
شکل 4 -19تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………. . 93

مقالات و پایان نامه ارشد

 

شکل 4- 20منحنی pushover قاب 8 طبقه PBPD RC SMFبهره برداری………………………. 94
شکل 4- 21 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………… . 95
شکل 4- 22 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………….. 96
شکل 4- 23 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………… . 97
شکل 4- 24منحنی pushover قاب 12 طبقه PBPD RC SMF(DBE)………… ……………… 98
شکل 4- 25 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………….. . 99
شکل 4- 26 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………….. . 100
شکل 4- 27 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………….. . 101
شکل 4- 28منحنی pushover قاب 12 طبقه PBPD RC SMF(MCE)………. ………………. 102
شکل 4- 29 تشکیل مفصل پلاستیک در قاب…………………………… ……………………………………….. . 103
شکل 4- 30منحنی pushover قاب 12 طبقه PBPD RC SMFبهره برداری………………………. 104
شکل 4- 31 تشکیل مفصل پلاستیک در قاب…………………………… …………………………………………….. 105
شکل 4- 32 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………… . 106
شکل 4- 33منحنی pushover قاب 20 طبقه PBPD RC SMF(DBE)………… ……………….. 107
شکل 4- 34 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………… . 108
شکل 4- 35 تشکیل مفصل پلاستیک در قاب…………………………… ………………………………………… . 109
شکل 4- 36منحنی pushover قاب 20 طبقه PBPD RC SMF(MCE)………. ………………… 110
شکل 4- 37 تشکیل مفصل پلاستیک در قاب…………………………… …………………………………………….. 111
شکل 4- 38منحنی pushover قاب 20 طبقه PBPD RC SMFبهره برداری……………………….. 112
 
 
 
 
فهرست جدول ها                                       صفحه
جدول 3-1 ضریب کاهش شکل پذیری……………………………… ……………………………………………… . 19
جدول 3-2 نرخ جابجایی تسلیم طرح…………………………………. ……………………………………………… . 22
جدول 3-3 مقادیر C2 برای فاکتور کاهش نیرو مختلف. …………………………………………………. . 26
جدول 3-4 نیروی برش طراحی…………………………………. ……………………………………………………… . 28
جدول 3-5 برش پایه طرح شده v/w از روش C2…………………………………………………………………… 31
جدول 3-6 سطح عملکرد ساختمان…………………………………. ………………………………………………. . 40
جدول 3-7 سطوح خطر لرزه ای……………………………………… ……………………………………………….. . 41
جدول 4-1 پارامتر های طراحی……………………………………… ………………………………………………… . 44
جدول 4-2 اطلاعات اساسی طراحی…………………………………………………………………………………….. . 44
جدول 4-3 پارامتر های طراحی……………………………………… ……………………………………………….. . 47
جدول 4-4 پارامترهای مهم طراحی 4 طبقه RC SMF…………………………………………………… . 47
جدول 4-5 پارامتر های طراحی برای محاسبه برش پایه ساختمان4 طبقه …………………………. 49
جدول 4-6 پارامتر های طراحی تیر ساختمان 4 طبقه…………………………………………………………… 50
جدول 4-7 پارامتر های طراحی ستون ساختمان 4 طبقه…………………………………………………….. 54
جدول 4-8 جزئیات ستون ها………………………………………………………………………………………………….   56
جدول 4-9 مقطع ستون ها……………………………………………………………………………………………………   56
جدول 4-10 پارامتر های طراحی……………………………………… …………………………………………. . 57
جدول 4-11 پارامترهای مهم طراحی 8 طبقه RC SMF…………………………………………………. 58
جدول 4-12 پارامتر های طراحی برای محاسبه برش پایه ساختمان8 طبقه ……………………. 58
جدول 4-13 پارامتر های طراحی تیر ساختمان 8 طبقه…………………………………………………….. 59
جدول 4-14 پارامتر های طراحی ستون ساختمان 8 طبقه………………………………………………… 60
جدول 4-15 جزئیات ستون ها……………………………………………………………………………………………..   62
جدول 4-16 مقطع ستون ها……………………………………………………………………………………………….   63
جدول 4-17 پارامتر های طراحی……………………………………… ………………………………………… . 64
جدول 4-18 پارامترهای مهم طراحی 12 طبقه RC SMF……………………………………………… 64
جدول 4-19 پارامتر های طراحی برای محاسبه برش پایه ساختمان12 طبقه ……………….   65
جدول 4-20 پارامتر های طراحی تیر ساختمان 12 طبقه………………………………………………… 66
جدول 4-21 پارامتر های طراحی ستون ساختمان 12 طبقه…………………………………………… 68
جدول 4-22 جزئیات ستون ها…………………………………………………………………………………………..   70
جدول 4-23 مقطع ستون ها…………………………………………………………………………………………….. 71
جدول 4-24 پارامتر های طراحی……………………………………… ……………………………………… . 72
جدول 4-25 پارامترهای مهم طراحی 20 طبقه RC SMF…………………………………………… 72
جدول 4-26 پارامتر های طراحی برای محاسبه برش پایه ساختمان20 طبقه …………….   73
جدول 4-27 پارامتر های طراحی تیر ساختمان 20 طبقه………………………………………………. 74
جدول 4-28 پارامتر های طراحی ستون ساختمان 20 طبقه…………………………………………. 77
جدول 4-29 جزئیات ستون ها…………………………………………………………………………………………   79
جدول 4-30 مقطع ستون ها…………………………………………………………………………………………..   81
 
فهرست نماد ها
 
PBPD…………………………………………………………………………………………..   طراحی بر اساس عملکرد پلاستیک
SMF……………………………………………………………………………………………..   قاب خمشی ویژه
RC……………………………………………………………………………………………….. بتن مسلح
DBE……………………………………………………………………………………………..   زلزله سطح خطر 1
MCE…………………………………………………………………………………………….. زلزله سطح خطر2
 
 
 
 
 
 
 
فصل 1
 
کلیات
 
1-1مقدمه
روش های طراحی لرزه ای کنونی عموما بر اساس تحلیل رفتار الاستیک سازه تحت نیروهای جانبی است. یعنی در این روش ها برش پایه با فرض رفتار الاستیک سازه ارائه می گردد و برای کاهش این نیرو از ضریب اصلاح Rاستفاده می شود (مانند استاندارد2800). که ضریبR بر اساس شکل پذیری سازه می باشد که در کل باعث می شود تعیین نیروی برش پایه با قضاوت مهندس همراه شود. در چنین حالتی که کاهش برش پایه بصورت تقریب می باشد. عملا سازه برای تغییر شکل های غیر الاستیک طراحی نشده و هنگامی که تحت زلزله شدید قرار گیرد، سازه عملکردی غیر قابل پیش بینی دارد یعنی تغییر شکل ها در این حالت تقریبا کنترل نشده است. که باعث شکل پذیری و کاهش اتلاف انرژی در سازه می شود و در نتیجه باعث عدم استفاده از تمام ظرفیت سازه می گردد.
در واقع علاوه بر غیر اقتصادی بودن ممکن است باعث تخریب سازه نیز می گردد.
ضعف روش های فعلی :

  1. فرض گارانتی شدن ایمنی یا کاهش خرابی با افزایش نیروی برش پایه:

در زلزله های گذشته واژگونی هایی به علت شکست محلی در ستون ها دیده شده است.

  1. فرض توزیع نیروی جانبی در ارتفاع سازه بر اساس رفتار الاستیک:

تحقیقات قبلی نشان داده که توزیع نیروی جانبی فعلی به شدت از جواب حاصل از تحلیل دینامیکی غیر خطی تاریخچه زمانی فاصله گرفته است . نتایج حاصل از آنالیز دینامیکی غیر خطی انجام شده توسط ویلاورد (1991-1997) توزیع نیروهای جانبی بدون در نظر گرفتن این اصل که سازه تحت زلزله شدید وارد ناحیه غیر الاستیک می شود می تواند اولین دلیل برای واژگونی تعداد بسیار زیادی از ساختمان ها در زلزله مکزیکو سیتی (1985) باشد. [1]

  1. بدست آوردن نسبت اندازه اعضا بر اساس سختی اولیه آن ها:

بزرگی نیروهای اعضا از رابطه سختی الاستیک اعضای سازه بدست می آید اما تحت زلزله شدید سختی تعداد زیادی از اعضا بشدت تغییر می کند با توجه به ترک خوردگی بتن یا تسلیم شدن فولاد و در حالی که سایر اعضا بدون تغییر باقی می مانند که این امر باعث تغییر در توزیع نیرو در اعضای سازه می شود. نسبت های مناسب اندازه اعضا بدون استفاده از توزیع مناسب تر حاصل نمی گردد طوری که توزیع شامل رفتار غیر الاستیک نیز بشود .

  1. تلاش برای پیش بینی جابجایی غیر الاستیک با بهره گرفتن از عوامل تقریبی و آنالیز رفتار:

این امر در بسیاری از تحقیقات قبلی انجام شده اثبات گردید[2].
5.تلاش برای حذف تسلیم ستون بوسیله نسبت استحکام تک ستون-به-تیر:
تحقیقات بسیاری نشان داد که روش های طراحی ظرفیت متعارف برای طراحی ستون ها در قاب خمشی بتن مسلح نمی توانند تسلیم در ستون ها را حذف کنند( دوولی و براچی 2001; کنتز وبرانینگ 2003) در واقع گشتاور تقاضا ستون اغلب دست کم گرفته می شود زیرا گشتاور ستون ها تنها از تیر ها یا دیگر اعضا متصل به ستون حاصل نمی گردد بلکه همچنین از جا بجایی جانبی نیز بدست می آید.[3]
پس سیستم های طراحی لرزه ای فعلی همیشه عملکرد مطلوبی را فراهم نمی کنند و برای رسیدن به طراحی مطلوب باید از طراحی استفاده شود که هم رفتار غیر الاستیک را در نظر بگیرد هم نیروی برش پایه مناسب به همراه توزیع بار جانبی مناسب. همچنین باید مکانیزم تسلیم مطلوب و دریفت مناسب در سطح خطر در طراحی از ابتدای کار در طراحی دخیل باشد.
به این منظور طراحی بر اساس عملکرد پلاستیک یاPBPD توسط پروفسور گل طی دهه اخیر معرفی شده و کامل گشت، در این روش مستقیما رفتار غیر خطی سازه در طراحی نقش داشته و هرگونه قضاوت مهندس و تکرار و سعی و خطا بعد از طراحی اولیه را حذف کرده است.
روشPbPd از دریفت هدف و مکانیزم تسلیم از پیش انتخاب شده بعنوان حالات عددی عملکردی استفاده می کند. هدف اصلی در طراحیPbPd ایجاد ساختمان با عملکرد لرزه ای قابل پیش بینی و کنترل شده می باشد.
برش پایه طراحی برای سطح خطر معین با معادل کردن کار لازم برای هل دادن مونوتونیک سازه تا جابه جایی هدف با انرژی مورد نیاز(Demand) در سیستم یک درجه آزاد الاستوپلاستیک معادل آن سازه برای رسیدن به وضعیت مشابه محاسبه می گردد.
همچنین در این روش توزیع نیروی جانبی در ارتفاع بر اساس توزیع نسبت برش های طبقه ماکزیمم به دست آمده از نتایج پاسخ تحلیلی دینامیکی غیر الاستیک می باشد.
این توزیع بار، وقتی سازه ها در حال پاسخ به زلزله های شدید و تغییر شکل های غیر الاستیک هستند تخمین بسیار خوبی از نیاز ممان ماکزیمم ستون می دهد و اثرات مودهای بالاتر به خوبی در توزیع بار جانبی منعکس می شود.
طراحی اعضاء و اتصالات نیز با بهره گرفتن از طراحی پلاستیک، برای رسیدن به رفتار و مکانیزم تسلیم مورد نظر انجام می گردد. در طراحی ستون ها به جای در نظر گرفتن یک گره کل درخت ستون در نظر گرفته می شود.
در این روش در طراحی اعضاء قاب هدف دستیابی به ستون های قوی و تیرهای ضعیف می باشد. در واقع تیرها بعنوان اعضای تسلیم شونده و ستون ها بعنوان اعضای تسلیم نشدنی می باشند که الاستیک باقی می مانند این نوع طراحی باعث اتلاف انرژی بیشتری در سازه می شود.

موضوعات: بدون موضوع  لینک ثابت
 [ 07:44:00 ب.ظ ]




کلمات کلیدی: خرابی پیشرونده، تحلیل استاتیکی غیرخطی، خرپای کمره­ای، تنومندی، مفاصل پلاستیک


فهرست مطالب
 
عنوان                                                      صفحه
فصل اول: پیشگفتار
1-1- مقدمه                                       2
1-2- تعریف مساله                                   3
1-3- هدف                                          3
1-4- ساختار پایان نامه                               5
فصل دوم : مبانی خرابی پیشرونده
2-1- مقدمه                                              7
2-2- مثالهایی از خرابی پیشرونده                         8
2-2-1– ساختمان فدرال آلفرد مورا                 8
2-2-2– ساختمانی آپارتمانی رونان پوینت           9
2-2-3- برج الکوبار                     10
2-2-4- ساختمان بانکرز تراست                    11
2-2-5- ساختمان تجاری اسکای لاین پلازا                          12
2-2-6- برج های دو قلوی تجارت جهانی آمریکا       13
2- 3- بر خرابی پیشرونده در اسناد و استانداردها        14                                   21
2-3-1- تعاریفی از خرابی پیشرونده/نامتجانس        14              ………………………………………………………………….21
2-4- روش های کلی بررسی پدیده خرابی پیشرونده                              15
2-5- انواع خرابی پیشرونده                                                                         18
2-6- مقاومت سازه ای در برابر خرابی پیشرونده          20
2-7- عوامل موثر در تنومندی سازه ای                                                   21
2-8-روش های ارزیابی شاخص تنومندی                       23
2-9-روش های طراحی در برابر خرابی پیشرونده                                  25
2-10- تحلیل خرابی پیشرونده                                                                     26
2-10-1- ابزارهای تحلیلی                            26
2-11- بر تکنیک های بهسازی ارائه شده برای مقابله با خرابی پیشرونده                                                                                                                              27
2-11-1- نمونه هایی از بهسازی اعضای خمشی        27
2-11-2- نمونه هایی از بهسازی اعضای باربر       28
2-12- بر مطالعات انجام شده در زمینه خرابی پیشرونده      28
 
فصل سوم – مفهوم سطوح عملکرد، مدلسازی و روش های تحلیل
3-1-تعیین سطح عملکرد بر اساس دستورالعمل بهسازی و FEMA-356 34
3-1-1- تعاریف مقدماتی                         34
3-1-2- سطوح عملکرد اجزای سازه‌ای و غیرسازه‌ای            34
3-1-2-1- سطوح عملکرد اجزای سازه‌ای                                          35
3-1-2-2- سطوح عملکرد اجزای غیرسازه‌ای              37                                        ………………………………………45
3-1-3- سطوح هدف عملکرد ساختمان                                             38
3-1-3-1- سطح عملکرد «خدمت‌رسانی بی‌وقفه                            38
3-1-3-1-1- سطح عملکرد 1 برای اجزای سازه‌ای- قابلیت استفاده بی‌قفه         39                                              ……….47
3-1-3-1-2-سطح عملکرد A برای اجزای غیرسازه‌ای- خدمت‌رسانی بی‌وقفه                                  39
3-1-3-2- سطح عملکرد «قابلیت استفاده بی‌وقفه                39
3-1-3-3- سطح عملکرد «ایمنی جانی»                                       39                   ……………………….49
3-1-3-3-1- سطح عملکرد 3 برای اجزای سازه‌ای – ایمنی جانی    40
3-1-3-3-2- سطح عملکرد C برای اجزای غیرسازه‌ای- ایمنی جانی  40
3-1-3-4- سطح عملکرد «آستانه فروریزش»            40          ………………………………..49
3-1-3-4-1- سطح عملکرد 5 برای اجزای سازه‌ای- آستانه فروریزش 40
3-1-3-4-2- سطح عملکرد E برای اجزای غیرسازه‌ای- لحاظ‌نشده 41
3-2- مفاصل پلاستیک                                                                                               41
3-2-1- کلیات                                   41
3-2-2-مدل سازی غیر خطی سازه واختصاص مفاصل پلاستیک 41                        ………………………..51
3-2-2-1- گروه اول- مفاصل تغییر شکل کنترل                   42                                  ……………..52
3-2-2-2- گروه دوم- مفاصل نیرو کنترل            44                                ……………………53
3-3- انواع روش های تحلیل                         44
3-3-1- تحلیل استاتیکی غیر خطی                 44
3-3-1-1- رسم منحنی ظرفیت (پوش‌آور).              46
3-3-2- تحلیل دینامیکی غیر خطی                                              46
3-4- روش‌های تحلیل خرابی پیش‌رونده در آیین‌نامه GSA                    47
3-4-1-روش غیرمستقیم                         47
3-4-2-روش مستقیم                            47
3-4-2-1- روش مقاومت موضعی                      47
3-4-2-2- روش مسیر جایگزین انتقال بار          47
3-4-2-2-1- تحلیل استاتیکی خطی                   47
3-4-2-2-2- تحلیل استاتیکی غیرخطی                48
3-4-2-2-3- تحلیل دینامیکی خطی                                               48
3-4-2-2-4- تحلیل دینامیکی غیرخطی                48
3-5-فرضیات تحلیل و طراحی                         49
3-6-مقاطع مورد استفاده در مدل سازی                 50
3-7-نحوه­ مقاوم سازی                           51
3-8-معرفی الگوی بارگذاری وارده                    53
 
4-5-1- بار گذاری ویژه ی خرابی پیشرونده                        53
4-2-2- بارگذاری ثقلی و جانبی                53
3-9- شاخص تنومندی                                                                                              .54
 
فصل چهارم- بررسی شاخص ­هایی از تنومندی و سلامت سازه

پایان نامه و مقاله

 

4-1- تحلیل استاتیکی غیرخطی سازه پنج طبقه                                   56                                     56
4-2 – تحلیل استاتیکی غیرخطی سازه هشت طبقه                               69
4-3- تحلیل استاتیکی غیرخطی سازه دوازده طبقه           80                   . 83
 
فصل پنجم – نتیجه گیری و پیشنهادات
5-1       نتیجه گیری                          92
5-2       پیشنهادات                                                                      93
مراجع                                                                                                                        94
 
 
 
فصل اول :
پیشگفتار
 
 
 
 

 

 
1-1- مقدمه
وقوع خرابی پیشرونده در سازه‌ها در هنگام زلزله و حتی در یک انفجار نزدیک به سازه به چالشی مهم تبدیل شده است. خرابی پیش‌رونده وضعیتی است که در آن بروز یک خرابی موضعی در یک عضو سازه‌ای منجر به شکست اعضای مجاور آن و فروریزش‌های اضافی در ساختمان می‌گردد.
بطور کلی ساختمان‌ها برای شرایط بارگذاری با احتساب انفجارهای گاز، انفجارهای بمب، برخوردهای وسایل نقلیه، طوفان، گردباد و از این قبیل بارها طراحی نمی‌شوند. ازاینرو زمانی که ساختمان‌ها در معرض چنین بارهای غیرمعمولی قرارمی‌گیرند، ممکن است متحمل آسیب‌های بزرگی شوند [1].
مثال ها از سازه هایی که خرابی پیشرونده به صورت جزیی یا کامل در آنها اتفاق افتاده است، اندک و کم سابقه است و درواقع توجه جامعه مهندسی بعد از انهدام بخشی از ساختمان مشهور آپارتمانی رونان پوینت در لندن در سال 1968 به این موضوع معطوف شد و بعد از حادثه ی انهدام ساختمان‌های تجارت جهانی در 11 سپتامبر سال 2001 بود که چندین کمیته استاندارد سازی برای بهبود استانداردهای روش های طراحی در برابر خرابی پیشرونده شروع بکار کردند و توجه ویژه­ای به بحث خرابی پیشرونده در ساختمان های با اهمیت بیشتر، صورت گرفت و از آن تاریخ به بعد بارگذاری ویژه ی خرابی پیشرونده در طراحی ها لحاظ گردید و لازم دانسته شد که ساختمان‌ها باید طوری طراحی شوند که بتوانند خرابی موضعی را با یکپارچه‌کردن اعضای سازه‌ای، بهبود بازپخش انرژی و توزیع مجدد بارها (با ایجاد مسیرهای جایگزین انتقال بار) محدود نموده و در مقابله با بارهای غیرمعمول مقاومت کنند [1].
 
 
 
1-2- تعریف مساله
بطور کلی ساختمانها برای شرایط بارگذاری خاص مانند انفجار، آتش سوزی و . . . طراحی نمیشوند و حتی زمانی که برای بارگذاری باد و یا زلزله طراحی می گردند، تمهیدات درست و کاملی برای حالت گسیختگی های موضعی در نظر گرفته نمی­شوند از اینرو ساختمان ها زمانی که در معرض چنین بارهایی قرار میگیرند، ممکن است دچار آسیب های جدی شوند [1].
خرابی پیشرونده می تواند بخاطر خطراتی چون (انفجار، ضربه اتومبیل و آتش سوزی و…..) یا خطراتی طبیعی چون زلزله باشد. نیروی زلزله می تواند نیروهای جانبی و تنش های پرقدرتی را ناشی شود. تاثیر این بار می تواند اعضای سازه ای را بیش از حد بارگذاری نماید که در نهایت به از دست رفتن یک یا چند عضو باربر منجر شود و امکان دارد که باعث خرابی اعضای سازه‌ای بیشتری شود. مشاهده خسارات زلزله در زمین لرزه­های گذشته نشان می دهد که بارهای لرزه‌ای می تواند سبب خساراتی شود که باعث از دست رفتن تکیه گاه ها شود و خرابی اولیه المان­های سازه­ای می تواند به دیگر اعضای باربر در مسیر های مختلف گسترش یابد.
این پدیده همچنین می‌تواند برای سازه‌های طراحی ‌شده بر اساس آئین‌نامه‌های جاری حین رخداد زلزله های شدید نیز مشکلاتی را بوجودآورد و حتی منجر به ویرانی کل سازه گردد. به عبارت دیگر، هر گونه ضعف در طراحی و یا اجرای المان های سازه ای ممکن است باعث بوجود آمدن پدیده خرابی پیشرونده در سازه‌ها حین بارگذاری لرزه ای نیز گردد. لذا مطالعه و بررسی تأثیر این پدیده در سازه­ها ضروری به‌نظر می‌رسد [2].
1-3- هدف
با مطالعات انجام شده و بررسی های بعمل آمده در زمینه ی احتمال آسیب پذیری ساختمانهای امروزی در سطح شهرها در برابر خرابی پیشرونده ̜و اینکه اکثر قریب به اتفاق ساختمانهای موجود یارای مقابله با چنین پدیده ای را نداشته و در برابر خرابی پیشرونده آسیب پذیر می باشند ̜لذا این مهم نیاز شد تا با ارائه راهکارهایی به دنبال بهبود این وضعیت بوده و بتوان به کمک ساختمانهایی شتافت که احداث شده اند، اما در طراحی هایشان بارگذاری ویژه ی خرابی پیشرونده لحاظ نشده و توانایی مقابله با آن را ندارند ̜بنابراین با ارائه راهکار به تقویت این ساختمانها پرداخت تا به نوعی از عمق فاجعه کاسته شود.
هدف اصلی این پایان نامه، ارائه­ راهکاری به منظور مقابله­ی سازه­ی احداث شده، با پیشرفت خرابی موضعی در سازه و تبدیل شدن آن به خرابی کلی و منهدم شدن آن میباشد یعنی سازه­ی مورد نظر در صورت از دست دادن یکی از ستون­های بحرانی­اش، قادر به تحمل وزن خود و بارهای ثقلی­اش بوده و بتواند تعادل خود را حفظ کند.همچنین در این پایان نامه سعی شده است تا حد امکان در معماری سازه تغییری ایجاد نشده و ساختمان کلیت خود را حفظ کرده و در برابر خرابی پیشرونده تنومندی آن کاهش نیابد.بدین منظور روش تحلیل استاتیکی غیر خطی مورد استفاده قرار گرفت.
طبیعتا همه روش ها بر اساس چندین فرض و سطوحی از ایده آل سازی هستند. لذا غیبت روش های محاسباتی در استانداردها جهت بررسی خرابی پیشرونده، تمرکز بر روش مسیر باربری جایگزین تحت سناریوی حذف یک ستون بحرانی را ناگزیر می سازد.
بدین منظور با بهره­ گیری از دستورالعمل­های آیین­نامه GSA[31] مبنی بر کاهش خسارت­های ناشی از خرابی پیشرونده با بهره گرفتن از روش مسیر باربری جایگزین، به بررسی تاثیر خرپای کمره­ای در بام ساختمان­های فولادی پنج طبقه، هشت طبقه و دوازده طبقه قاب خمشی با کمک نرم­افزار SAP2000 [27]و بصورت سه بعدی پرداخته و این ارزیابی­ها با کمک تحلیل استاتیکی غیرخطی انجام و نتایج بصورت جداول و نمودارهایی ارائه شده است که شامل نحوه­ تشکیل مفاصل پلاستیک اعضا در هر سه سازه، مقایسه­ تنومندی سازه­ها و ارزیابی جابجایی قائم گره بالای محل حذف ستون مورد نظر و همچنین بررسی تغییر مکان جانبی نسبی طبقات سازه­ها می­باشد.
 
 
 
 
 
 
 
1-4- ساختار پایان نامه
این پایان نامه در 5 فصل تهیه و تنظیم شده است که به شرح زیر می باشد :
فصل اول شامل تعریف مسئله، اهداف دنبال شده در این پایان نامه و همینطور شیوه و روند تحقیق انجام شده می باشد.
در فصل دوم به مقایسه ای کوتاه از مقررات و تعاریف مربوط به خرابی پیشرونده در آئین نامه های معتبر بین المللی ساختمانی پرداخته می شود. همچنین ملا حظات مربوط به بهسازی ساختمان ها در برابر خرابی پیشرونده و خلاصه ای از مطالعات انجام شده ارائه شده است.
فصل سوم به بیان مدل ها و فرضیات، مدل سازی غیر خطی سازه می پردازد.
در فصل چهارم به نحوه اعمال بارگذاری در تحلیل استاتیکی غیر خطی وبررسی نتایج حاصل از این تحلیل پرداخته می شود.
فصل پنجم نیز به نتیجه گیری و بحث پیرامون نتایج و در نهایت ارائه پیشنهادات جهت تحقیقات آتی می ­پردازد.
در انتهای این مجموعه نیز مراجع ارائه شده است.
 
 
 
 
 
 
 
 
 
فصل دوم :
مبانی خرابی پیشرونده
 
 
 
 
 
 
 
 
 
 

 

 
2-1- مقدمه
خرابی پیشرونده را به صورت گسترش خرابی موضعی اولیه از عضوی به عضو دیگر كه سرانجام به گسیختگی تمام سازه یا قسمت بزرگی از آن می انجامد تعریف می كنند. خطرات احتمالی و بارهای غیرعادی كه می تواند موجب خرابی پیشرونده شود، شامل این موارد می باشند: خطای طراحی یا ساخت، آتش سوزی، انفجار گازها، اضافه بار تصادفی، تصادف وسایل نقلیه، انفجار بمب ها و غیره. چون احتمال وقوع این خطرات كم است، در طراحی سازه ای آنها را در نظر نمی گیرند یا با اندازه گیری های غیر مستقیم به آنها می‌پردازند. اكثر آنها ویژگی كنش طی مدت زمان نسبتاً كوتاه را دارند و به پاسخ های دینامیكی می‌انجامند.خرابی پیشرونده در ابتدا توجه محققین را در دهه 70 میلادی، پس از گسیختگی جزئی برجی در رونان پوینت انگلستان به خود جلب كرد. پس از حملات تروریستی مركز تجارت جهانی در 11 سپتامبر 2001، علاقه مجدد به بررسی گسیختگی پیشرونده ایجاد گردید.
در آیین نامه های موجود ساختمانی، طراحی سازه ها برای بارهای قابل قبولیست كه ممكن است در طول عمر سازه بر آن وارد شود. سازه ها را معمولاً برای حوادث غیر طبیعی كه می توانند موجب خرابی های فراگیر شوند طراحی نمی كنند. اكثر آیین نامه های رایج فقط دارای توصیه های كلی برای تعدیل تأثیرگسیختگی پیشرونده در سازه هایی هستند كه فراتر از بارهای طراحی شان بارگذاری می شوند.
در این فصل، به مقایسه جامعی از مقررات مربوط به خرابی پیشرونده در آئین نامه های معتبر بین المللی ساختمانی پرداخته شده و ملاحظات مربوط به بهسازی ساختمان ها در برابر خرابی پیشرونده ارائه میشود برای ادامه دادن به این بخش چندین تعریف برای واژه خرابی پیشرونده/نامتجانس مرور شده است که با برخی مثالها همراه است سپس انواع خرابی پیشرونده و نگاهی کوتاه بر آیین نامه های معتبر به همراه بر ادبیات فنی و طبقه بندی روش های کاهش خرابی پیشرونده بیان شده است [4].
 
 
 
2-2- مثال­هایی از خرابی پیشرونده
نمونه هایی از سازه هایی که بصورت کلی یا جزئی دچار خرابی پیشرونده شده اند در واقع خیلی کم و دارای فاصله زمانی هستند. خرابی پیشرونده پدیده ایست که تدریجا در استانداردهای طراحی در نظر گرفته می شود و تمایل به سمت آن بعد از حادثه انهدام ساختمانهای تجارت جهانی در 11 سپتامبر 2001 افزایش شدیدی یافت. در اینجا مختصرا به چند نمونه از خرابی پیشرونده اشاره شده است که در صفحه­های بعد ملاحظه می­ شود [1].
2-2-1- ساختمان فدرال آلفرد مورا
این ساختمان بین سال های 1970 تا 1976 در شهر اوکلاهاما طراحی و ساخته شد، که یک ساختمان اداری دولتی ایالات متحده بود. در 19 آوریل 1995 هدف حمله یک کامیون با مواد منفجره در ضلع شمالی قرار گرفت.سیستم سازه ای شامل قاب بتن آرمه در نه طبقه بود. ویژگی خاص آن وجود شاهتیر انتقالی در طبقه سوم در سمت شمالی بود طوریکه فاصله بین ستونهای طبقه همکف دو برابر دیگر طبقات بالاتر از خود بود.
سه ستون بطور ناگهانی بر اثر انفجار تخریب شدند و همه سقف بالای سر خود را به سمت انهدام پیش بردند، همانطور که در شکل 2-1 نشان داده شده است. این حادثه بعنوان مثالی در خرابی پیشرونده بخاطر عدم ظرفیت سیستم قاب و شاهتیر انتقالی برای مقابله با لنگرها و برش های افزایش یافته کنار سه ستون حذف شده در طبقه همکف نگریسته می شود [1].
شکل 2-1 خرابی پیشرونده در ساختمان آلفرد مورا
2-2-2- ساختمانی آپارتمانی رونان پوینت
رونان پوینت ساختمانی آپارتمانی بود که بین سال های 1966 تا 1968 ساخته شد. در 16 می سال 1968، انفجار گاز زیر پانل دیوار خارجی در طبقه هجدهم، که در گوشه ساختمان 22 طبقه بود اتفاق افتاد، سیستم سازه ای دیوار و سقف پیش ساخته بتن آرمه بود که دیوارها و سقف ها به هم پیچ می شدند و اتصالات با ملات پر می شدند. این بدان معنی است که اگر دیوار نگهدارنده پایینی حذف گردد، سقف ها پتانسیل زیادی برای ایستادگی در برابر خمش نخواهند داشت. بنابراین زمانی که پانل دیوار در طبقه هجدهم بوسیله انفجار به بیرون رانده شد، طبقات بالاتر منهدم شدند و سقوط نخاله های ریخته شده شروع به خرابی طبقات پایین تر تا طبقه همکف نمودند. همانطور که در شکل 2-2 دیده می شود انهدام این ساختمان بدلیل بی بهره بودن ساختمان از نامعینی لازم و ایستادگی اتصال سقف در برابر خمش ناشی از باز توزیع بصورت پیشرونده صورت گرفت. این یک نمونه از خرابی پیشرونده است كه از دست دادن عضو باربر منجر به خرابی كلی سازه گردید [3].
شکل 2- 2 خرابی پیشرونده در ساختمان رونان پوینت
2-2-3- برج الکوبار
کوبار تاورز یکی از چندین ساختمان آپارتمانی در الکوبار نزدیک دهران عربستان سعودی بود. در 25 ژوئن سال 1996 یکی از ساختمان های آپارتمانی به شدت خسارت دید، زمانی که یک بمب سنگین در خیابان روبروی ساختمان منفجر شد. ساختمان، هشت طبقه و پلانی تی شکل داشت. این ساختمان با سیستم دیوارها و سقف پیش ساخته بتن آرمه، ساخته شد. کلیه بارهای قائم و جانبی بوسیله سیستم دیوار پیش ساخته تحمل می شد. انهدام محدود به سمت روبرو و دهانه بیرونی ساختمان شد. اگر چه دیوارهای برشی بوسیله انفجار از بین رفتند ولی انهدام جز در محدوده خسارت اولیه پیشرفت نکرد. بررسی ها نشان داد که سیستم بتن آرمه پیش ساخته شکل پذیری کافی برای مقابله با اتفاقات فوق العاده را داشته است. اتصالات داخل هم سقف و دیوار نیز در اکثر قسمت ها سالم ماندند و دربرابر انهدام مقابله کردند [2].
شکل2-3 برج الکوبار
2-2-4- ساختمان بانکرز تراست
این ساختمان مثالی از یک سازه است که از خرابی پیشرونده سالم ماند. این سازه 40 طبقه اوائل سال 1970 در نیویورک ساخته شد درست جایی که برج تجارت جهانی جنوبی ایستاده بود. سیستم سازه ای شامل قاب فولادی معمولی بود با تیرهایی که در دو جهت با اتصال خمشی به ستون ها متصل بودند. این سازه ضربات نخاله های برج منهدم شده تجارت جهانی جنوبی را تحمل کرد. بخشی از دیوار های خارجی برج جنوبی در طبقه 23 به این ساختمان برخورد کرد که خسارت شامل خراب شدن سیستم های سقف، تیر های محیطی، بین طبقات 9 تا 23 و خراب شدن ستون های خارجی بین طبقات 9 تا 18 بود. که در شکل 2-4 دیده می شود.
علیرغم از بین رفتن عضو باربر قائم، خرابی بیشتری جزآنچه مستقیما بدلیل نخاله های برج منهدم شده تجارت جهانی جنوبی بوجود آورد ایجاد نشد. بطور واضح قابهای خمشی نامعینی و شکل پذیری کافی برای مقابله با تنش های باز توزیع شده بعد از حذف ستون دارند و انرژی جنبشی ناشی از حذف ناگهانی ستون و افتادن نخاله ها را جذب می کنند [1].
 
 
 
 
 
 
 
شکل 2-4 ساختمان بانکرز تراست
2-2-5- ساختمان تجاری اسکای لاین پلازا
سال 1973، که به هنگام بتن ریزی در طبقه 24، یک خرابی پیشرونده در کل ارتفاع برج رخ می دهد و هم چنین در اثرضربه های مخروبه ها، خرابی پیشرونده افقی در کل گاراژ پارکینگ کنار برج اتفاق می‌افتد[3].
شکل 2-5 ساختمان تجاری اسکای لاین پلازا
 
2-2-6- برج های دو قلوی تجارت جهانی آمریکا
برج های دو قلوی تجاری آمریکا ، 11 سپتامبر2001، برخورد دو هواپیما به این برج ها باعث خرابی آنهاو هم چنین خرابی کلی و جزئی 10 ساختمان مجاور آنها شد که ضعف این سازه ها را در هنگام رویارویی با بارگذاری غیر عادی و پیش بینی نشده نشان می دهد [4] .

  • General Service Administration
  • Robustness

3- Ronan Point
10– General Service Administration
11– Robustness

موضوعات: بدون موضوع  لینک ثابت
 [ 07:43:00 ب.ظ ]





فهرست مطالب
فصل 1 مقدمه 1
2
3
4
بر منابع 5
6
6
7
8
9
2-2-4معادلات انرژی در سیستم چند درجه آزادی با رفتار غیرخطی……………………………..9
10
2-2-5-1 انرژی ورودی ) 11
) 11
) 12
) 12
) 13
13
13
14
14
14
15
15
16
16
16
17
17
17
2-3-3 شاخص ­های ترکیبی 18
18

2-3-4 شاخص ­های خسارت بیشینه شکل­پذیری 19
2-3-5 میانگین وزنی شاخص ­های خسارت 20
2-3-6 تاریخچه شاخص خسارت 20
24
24
25
26
27
28
28
29
31
42
35
38
40
42
42
43
46
48
49
51
فصل 3 معرفی و مدلسازی سازه­های موردمطالعه 54
55
55
56
59
60
61
61
61
گام زمانی در آنالیز غیرخطی نرم­افزار Perform 3D 62
کنیک حل نرم­افزار Perform 3D 62
62
63
65
65
65
68
فصل 4 نتایج و تفسیر آنها 71
72
73
73
75
77
79
81
81
81
83
83
84
84

پایان نامه

 

85
86
87
88
89
90
91
91
92
93
94
95
95
96
96
98
100
102
104
105
106
107
108
109
110
فصل 5 جمع‌بندی و پیشنهادها 111
112
112
113
مراجع 115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست شکل‌ها
3
8
11
30
31
32
33
35
36
36
37
37
39
39
40
41
42
44
46
47
47
57
57
58
59
63
64
66
66
68
69
70
74
74
75
75
76
76
77
77
78
78
79
79
80
80
81
82
82
82
82
83
83
83
83
84
84
84
84
85
85
85
85
86
86
86
86
87
87
87
87
88
88
89
89
90
90
91
92
92
93
93
94
94
95
96
97
97
98
98
99
99
100
100
101
101
102
102
103
103
104
105
106
106
107
107
108
108
109
 
فهرست جدول‌ها
45
48
60
60
67
67
67
68
69
73
110
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست نمادها
انرژی ورودی……………………………
انرژی جنبشی …………………………..
انرژی میرایی…………………………..
انرژی کرنشی الاستیک……………………..
انرژی هیسترتیک…………………………
شاخص خسارت پارک انگ…………………..
میراگر ویسکوالاستیک…………………… VED
مدول ذخیره برشی ……………………….
مدول اتلاف برشی…………………………
مدول مرکب برشی…………………………
سختی میراگر……………………………
میرایی میراگر………………………….
نسبت میرایی معادل ……………………..
مدول اتلاف………………………………
 
 
 
 
 
 
 
 
 
 
 
 
 

فصل 1
مقدمه

 
 

1-1 مقدمه

سالانه در جهان، به‌طور متوسط 10000 نفر در اثر زلزله می­میرند (شکل (1-1)). بررسی­های سازمان یونسکو نشان می­دهد که خسارت مالی ناشی از زلزله از سال 1926 تا 1950 میلادی، چیزی در حدود 10 میلیارد دلار بوده است. در این فاصله زمانی در آسیای میانه دو شهر و 200 روستا تخریب شدند. از آن موقع به بعد نیز چندین شهر ازجمله عشق­آباد (1948)، اقادیر (1960)، اسکو پیه (1963)، ماناگوا (1972)، گمونا و تانگ شان (1976)، مکزیکوسیتی (1985)، اسپیتاکا (1988)، کوبه (1995)، شهرهایی در ترکیه و تایوان (1999) و صدها روستا در اثر زمین­لرزه با خاک یکسان شدند. نوشته­های تاریخی گواه نگرانی دیرینه بشر از خطرات ناشی از زمین­لرزه می­باشند[1]. به همین دلیل است که انسان درصدد مقابله با این پدیده طبیعی می­باشد که در این راه پیشرفت­های چشمگیری نیز کرده است. اما بااین‌وجود به دلیل پیچیدگی بیش‌ازحد این پدیده کماکان نتوانسته چه ازلحاظ جانی و چه ازلحاظ مادی به ایمنی و تضمین کامل برسد.
امروزه به‌خوبی مشخص‌شده است که سازه­های طراحی ‌شده بر اساس ضوابط آیین‌نامه‌های موجود، در برابر زلزله­های شدید، متحمل خسارات سنگین خواهند شد. ولی بااین‌وجود هنوز برخی ضوابط طراحی لرزه­ای ( خصوصاً در طراحی اولیه سازه­ها ) بر پایه تحلیل­های ارتجاعی و استفاده از یک نیروی استاتیکی معادل با زلزله بناشده‌اند[2و3].
بارهای لرزه­ای اصولاً ماهیتی قراردادی و اعتباری داشته و نیروهای طراحی لرزه­ای پیشنهادشده توسط آیین‌نامه‌ها عموماً به‌مراتب کوچک‌تر از نیروهایی می­باشند که در هنگام زلزله به سازه وارد می­گردند. نیروهای بکار گرفته‌شده به‌وسیله زلزله به ویژگی­های الاستیک و پلاستیک سازه بستگی دارند.
پژوهش­های مختلف نشان می­ دهند که در پاسخ لرزه­ای سازه­ها، پارامترهای دیگری نیز دخیل می­باشند و صرف بحث نیرو – تغییر مکان در ارتجاعی یا حتی الاستوپلاستیک کامل دوخطی نمی ­تواند توجیه‌کننده تمامی رفتارهای لرزه­ای سازه باشد. درنتیجه پژوهشگران، به دنبال پیشنهاد روشی نوین در طرح لرزه­ای سازه­ها می­باشند. در همین راستا و طی دو دهه اخیر بحث انرژی بسیار موردتوجه قرارگرفته است. زیرا با پیشرفت­های حاصل‌شده در این روش، بسیاری از پارامترها و رفتارهای مطرح در طرح لرزه­ای سازه­ها قابلیت توجیه و اعمال در فرایند طراحی را یافته­اند. بااین‌وجود، هنوز هم ناشناخته­ها و کاستی­های فراوانی درروش انرژی وجود دارد که مانع از ارائه آن به‌عنوان یک روش جامع در قالب آیین‌نامه‌ای مطمئن گشته است. با توجه به تحقیقات و پژوهش‌های گسترده‌ای که در حال حاضر روی این موضوع در سطح جهان صورت می­گیرد، آتیه­ای روشن برای آن پیش‌بینی می­گردد و چه‌بسا در آینده­ای نزدیک، اصول و ضوابط موجود فعلی در آیین‌نامه‌ها با اصول و ضوابط روش انرژی جایگزین گردند.

  • خسارت جانی ناشی از زمین­لرزه­های مهم[1]

1-2 ضرورت و اهداف تحقیق

موضوعات: بدون موضوع  لینک ثابت
 [ 07:43:00 ب.ظ ]




 
کلمات کلیدی
زلزله، طبقه نرم، قاب خمشی بتن مسلح، تحلیل دینامیکی خطی طیفی، تحلیل استاتیکی غیرخطی (پوش­آور)
 
 
 
 
 
 
فهرست مطالب
فصل اول: تئوری مساله
-11- مقدمه……………………………………………………………………………………………………………………………2
1-2- اهمیت موضوع………………………………………………………………………………………………………………..5
1-3- تعریف طبقه نرم………………………………………………………………………………………………………………..6
1-4- سابقه طبقه نرم در آیین­نامه­ های مختلف………………………………………………………………………………..6
1-5- بر پیشینه تحقیقاتی…………………………………………………………………………………………………15
1-6- ویژگی­­های طبقه نرم………………………………………………………………………………………………………..18
1-7- عوامل موثر بر ایجاد طبقه نرم…………………………………………………………………………………………….19
1-7-1- اثر میانقاب­ها و دیوارهای جدا کننده………………………………………………………………………………20
1-7-2- اثر ارتفاع…………………………………………………………………………………………………………………..23
1-8- چگونگی طراحی برای جلوگیری از ایجاد طبقه نرم………………………………………………………………24
1-9- تجزیه و تحلیل نیروهای وارد به طبقه نرم…………………………………………………………………………….25
1-10- علت و مکانیسم خرابی…………………………………………………………………………………………………..27
1-11- عوامل موثر در تشدید خرابی…………………………………………………………………………………………..31
1-12- خرابی­های مشابه خرابی­های سازه­های دارای طبقه نرم………………………………………………………….32
1-13- فصل­های مختلف پژوهش………………………………………………………………………………………………36
 
فصل دوم: کلیات مدلسازی
2-1- مقدمه……………………………………………………………………………………………………………………………38
2-2- معرفی قاب­های مورد مطالعه……………………………………………………………………………………………38
2-3- محاسبه ضریب زلزله در قاب­های مورد مطالعه……………………………………………………………………..40
فصل سوم: تحلیل طیفی
3-1- مقدمه……………………………………………………………………………………………………………………………44
3-2- محاسبه میزان سختی طبقه در قاب­های مدلسازی شده…………………………………………………………….44
3-3- آنالیز دینامیکی خطی طیفی………………………………………………………………………………………………46
3-4- اثر طبقه نرم بر جابجایی سازه…………………………………………………………………………………………….49
3-5- اثر طبقه نرم بر دریفت سازه……………………………………………………………………………………………….56
3-6- اثر طبقه نرم بر نیروهای داخلی سازه…………………………………………………………………………………..62
3-7- اثر طبقه نرم بر زمان تناوب مودهای سازه…………………………………………………………………………….73
3-8- صحت­سنجی…………………………………………………………………………………………………………………77
 
فصل چهارم: تحلیل استاتیکی غیرخطی
4-1- مقدمه……………………………………………………………………………………………………………………………80
4-2- آنالیز استاتیکی غیرخطی………………………………………………………………………………………………….80
4-3- روش ضرایب فما 356……………………………………………………………………………………………………..81
4-3-1- محاسبه ضرایب فما 356 و جابجایی هدف………………………………………………………………………86
4-3-2- مدول رفتار دوخطی نیرو-تغییر مکان در استاندارد فما 356………………………………………………….87
4-4- الگوی بار جانبی…………………………………………………………………………………………………………….87
4-5- سطوح عملکرد لرزه­ای سازه……………………………………………………………………………………………88
4-6- نحوه مدلسازی برای تحلیل استاتیکی غیرخطی (پوش­آور)……………………………………………………..89
4-7- تجزیه و تحلیل نمودارها…………………………………………………………………………………………………..90
4-7-1- تاثیر حرکت طبقه نرم به سمت بالا بر منحنی ظرفیت سازه…………………………………………………91
4-7-2- تاثیر افزایش ارتفاع طبقه نرم بر منحنی ظرفیت سازه…………………………………………………………98
4-7-3- چگونگی پخش مفاصل پلاستیک در سازه…………………………………………………………………….102
4-8- صحت سنجی……………………………………………………………………………………………………………….105
 
فصل پنجم: تاثیر خرابی طبقه نرم بر محیط زیست
5-1- مقدمه………………………………………………………………………………………………………………………….107
5-2- تاثیر سازه­های بتنی دارای طبقه نرم بر آلودگی هوا پس از زلزله……………………………………………..108
5-3- کاربرد نانوتکنولوژی برای کنترل ذرات معلق و جلوگیری از آلودگی هوا……………………………….111
 
فصل ششم: جمع­بندی و ارائه پیشنهاد
6-1- خلاصه و جمع­بندی………………………………………………………………………………………………………115
6-2- نتایج…………………………………………………………………………………………………………………………..116
6-3- پیشنهادهایی جهت ادامه کار……………………………………………………………………………………………120
 
منابع…………………………………………………………………………………………………………………………121
 
 
 
 
 
 
 
 
فهرست اشکال
فصل اول: تئوری مساله
شکل 1-1: نحوه انتقال انرژی زلزله به سازه…………………………………………………………………………………….3
شکل 1-2: ایجاد تغییر مکان جانبی ماندگار 6 درجه­ای در اثر پدیده نرم………………………………………………4
شکل 1-3: نمونه ­ای از خرابی ناشی از پدیده طبقه نرم در ژاپن……………………………………………………………4
شکل 1-4: شکست طبقه نرم به علت حذف میانقاب­ها……………………………………………………………………..5
شکل 1-5: زلزله 1382 بم: مدفون شدن 3 طبقه از ساختمان در اثر پدیده طبقه نرم………………………………….8
شکل 1-6: زلزله 1382 بم؛ ایجاد تغییر شکل ماندگار به علت طبقه نرم……………………………………………….9
شکل1-7: زلزله 1994 نورتریج؛ خرابی ساختمان در اثر پدیده طبقه نرم……………………………………………..10
شکل 1-8: شکست طبقه پنجم از ساختمان 8 طبقه……………………………………………………………………….. 11
شکل 1-9: کوبه 1995 …………………………………………………………………………………………………………… 11
شکل 1-10: سطح آسیب وارده به سازه­های با طبقه همکف باز در زلزله 1995 کوبه…………………………….11
شکل 1-11: زلزله 1999 کوجائلی …………………………………………………………………………………………….13
شکل 1-12: زلزله 1999 دوزجه……………………………………………………………………………………………….13
شکل 1-13: زلزله 2003 بینگول؛ شکستن ستون­های طبقه همکف در اثر پدیده نرم……………………………..13

پایان نامه

 

شکل 1-14: زلزله 2008 چین؛ ایجاد تغییر شکل ماندگار در ستون……………………………………………………14
شکل 1-15: زلزله 2002 بهوج؛ شکستن ستون­ها در اثر پدیده طبقه نرم………………………………………………15
شکل 1-16: انعطاف پذیری بیش از حد طبقه نرم در مقایسه با سایر طبقات…………………………………………18
شکل 1-17: ایجاد مکانیسم طبقه در ساختمان در حال ساخت در آستانه ریزش (ایتالیا، 1976)………………19
شکل 1-18: تغییر شکل ناشی از طبقه نرم……………………………………………………………………………………..20
شکل 1-19: مقایسه سازه واقعی و سازه طراحی شده در واقعیت……………………………………………………….22
شکل 1-20: چگونگی عملکرد سازه دارای طبقه نرم در زلزله………………………………………………………….23
شکل 1-21: چگونگی عملکرد سازه دارای طبقه نرم در زلزله………………………………………………………….24
شکل 1-22: منحنی ظرفیت سازه………………………………………………………………………………………………..26
شکل 1-23: مقایسه رفتار قاب­های مختلف…………………………………………………………………………………..26
شکل 1-24: فرایند خرابی سازه دارای طبقه نرم…………………………………………………………………………….29
شکل 1-25: چیدمان نامتقارن دیوار در پلان………………………………………………………………………………….32
شکل 1-26: ترکیب طبقه نرم و پیچش………………………………………………………………………………………..32
شکل 1-27: ضوابط مربوط به خاموت­ها………………………………………………………………………………………33
شکل1-28: طراحی غلط بر اساس تیر قوی-ستون ضعیف……………………………………………………………….34
شکل1-29: مقایسه دو نوع طراحی متفاوت…………………………………………………………………………………..35
شکل 1-30: خرابی ناشی از طراحی غلط بر اساس تیر قوی-ستون ضعیف………………………………………….35
 
فصل دوم: کلیات مدلسازی
شکل 2-1: تصویر مدلسازی شده قاب 7 و 9 طبقه­ی دارای طبقه نرم، در حالی که طبقه نرم در طبقه اول قرار دارد………………………………………………………………………………………………………………………………………39
 
فصل سوم: تحلیل طیفی
شکل 3-1: تغییر شکل قاب 7 طبقه در اثر نیروی زلزله، در حالی که طبقه نرم در طبقات سازه جابجا می‌شود………………………………………………………………………………………………………………………………….47
شکل 3-2: تغییر شکل قاب 9 طبقه در اثر نیروی زلزله، در حالی که طبقه نرم در طبقات سازه جابجا می‌شود………………………………………………………………………………………………………………………………….48
شکل 3-3: مشخصات قاب مدل شده توسط یوسف دینار………………………………………………………………..81
 
فصل چهارم: تحلیل استاتیکی غیرخطی
شکل 4-1: روش ضرایب برای تعیین جابجایی هدف……………………………………………………………………..85
شکل 4-2: معادل­سازی منحنی پوش­آور با منحنی دو خطی……………………………………………………………..86
شکل 4-3: منحنی ساده شده نیرو-جابجایی………………………………………………………………………………….88
شکل 4-4: باند رنگی برای نمایش سطوح عملکردی در ایتبس………………………………………………………..92
شکل 4-5: نمایش سطوح عملکردی روی منحنی نیرو-تغییر مکان……………………………………………………92
شکل 4-6: نمایش توزیع بار متناسب با تحلیل استاتیکی خطی………………………………………………………….93
شکل 4-7: نمایش توزیع بار یکنواخت………………………………………………………………………………………..93
شکل 4-8:مطالعات انجام شده توسط یوسف دینار در مورد چگونگی پخش مفاصل پلاستیک در سازه……………………………………………………………………………………………………………………………………108
 
فصل پنجم: تاثیر خرابی طبقه نرم بر محیط زیست
شکل 5-1: آلودگی هوا توسط ذرات معلق بتنی حین تخریب و بازسازی ساختمان­ها پس از زلزله…………111
شکل 5-2: خرابی طبقه ششم ساختمان 8 طبقه شهرداری شهر کوبه در اثر زلزله 1995،که پس از بازسازی ساختمان جدید 5 طبقه شد………………………………………………………………………………………………………113
شکل 5-3: خرابی طبقه اول مرکز خرید روکو در اثر زلزله، که پس از بازسازی ساختمان جدید تنها دارای طبقه همکف می­باشد…………………………………………………………………………………………………………….114
شکل 5-4: خرابی پارکینگ طبقه همکف یک ساختمان مسکونی در اثر زلزله، که برای بازسازی کل سازه تخریب و سازه جدید بنا شد…………………………………………………………………………………………………….114
 
 
 
فهرست نمودارها
فصل اول: تئوری مساله
نمودار 1-1: افزایش سختی سازه به علت وجود دیوار……………………………………………………………………..21
نمودار 1-2: کاهش جابجایی جانبی سازه به علت وجود دیوار………………………………………………………….21
نمودار 1-3: منحنی ظرفیت سازه در دو حالت شکست طبقه نرم و طراحی طبقه نرم ……………………………..30
نمودار 1-4: مقایسه میزان انرژی جذب شده در دو حالت شکست معمولی و شکست طبقه نرم……………….31
نمودار 1-5: منحنی ظرفیت جانبی سازه در دو حالت با و بدون اثر ………………………………………..31
 
فصل سوم: تحلیل طیفی
نمودار 3-1: سختی قاب 7 طبقه دارای طبقه نرم……………………………………………………………………………..45
نمودار 3-2: سختی قاب 9 طبقه دارای طبقه نرم……………………………………………………………………………..46
نمودار 3-3: جابجایی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر……………………………………….53
نمودار 3-4: جابجایی قاب 7 طبقه دارای طبقه نرم- ارتفاع طبقه نرم 5 متر…………………………………………..53
نمودار 3-5: جابجایی قاب 7 طبقه دارای طبقه نرم- ارتفاع طبقه نرم 5/5 متر………………………………………..54
نمودار 3-6: جابجایی قاب 9 طبقه دارای طبقه نرم- ارتفاع طبقه نرم 5/4 متر………………………………………..54
نمودار 3-7: جابجایی قاب 9 طبقه دارای طبقه نرم- ارتفاع طبقه نرم 5 متر…………………………………………..55
نمودار 3-8: جابجایی قاب 9 طبقه دارای طبقه نرم- ارتفاع طبقه نرم 5/5 متر………………………………………..55
نمودار 3-9: دریفت قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر…………………………………………59
نمودار 3-10: دریفت قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر………………………………………….59
نمودار 3-11: دریفت قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر……………………………………….60
نمودار 3-12: دریفت قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر……………………………………….60
نمودار 3-13: دریفت قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر………………………………………….61
نمودار 3-14: دریفت قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر……………………………………….61
نمودار 3-15: نیروی برشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر………………………………..67
نمودار 3-16: نیروی برشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر…………………………………..67
نمودار 3-17: نیروی برشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر………………………………..68
نمودار 3-18: نیروی برشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر………………………………..68
نمودار 3-19: نیروی برشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر…………………………………..69
نمودار 3-20: نیروی برشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر………………………………..69
نمودار 3-21: لنگر خمشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر………………………………..70
نمودار 3-22: لنگر خمشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر……………………………………70
نمودار 3-23: لنگر خمشی قاب 7 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر………………………………..71
نمودار 3-24: لنگر خمشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/4 متر………………………………..71
نمودار 3-25: لنگر خمشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5 متر……………………………………72
نمودار 3-26: لنگر خمشی قاب 9 طبقه دارای طبقه نرم – ارتفاع طبقه نرم 5/5 متر………………………………..72
نمودار 3-27: نمودار دریفت به مکان طبقه نرم مستخرج از تحقیقات یوسف دینار……………………………….78
 
فصل چهارم: تحلیل استاتیکی غیرخطی
نمودار 4-1: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5/4 متر تحت بار استاتیکی خطی……………….92
نمودار 4-2: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5 متر تحت بار استاتیکی خطی………………….92
نمودار 4-3: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5/5 متر تحت بار استاتیکی خطی……………….93
نمودار 4-4: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5/4 متر تحت بار استاتیکی خطی……………….93
نمودار 4-5: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5 متر تحت بار استاتیکی خطی…………………..94
نمودار 4-6: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5/5 متر تحت بار استاتیکی خطی……………….94
نمودار 4-7: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5/4 متر تحت بار یکنواخت………………………95
نمودار 4-8: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5 متر تحت بار یکنواخت………………………….95
نمودار 4-9: منحنی­های ظرفیت سازه 7 طبقه دارای طبقه نرم 5/5 متر تحت بار یکنواخت………………………96
نمودار 4-10: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5/4 متر تحت بار یکنواخت…………………….96
نمودار 4-11: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5 متر تحت بار یکنواخت……………………….97
نمودار 4-12: منحنی­های ظرفیت سازه 9 طبقه دارای طبقه نرم 5/5 متر تحت بار یکنواخت…………………….97
نمودار 4-13: مقایسه منحنی­های ظرفیت سازه 7 طبقه دارای طبقه اول نرم تحت بار یکنواخت………………..98
نمودار4-14: مقایسه منحنی­های ظرفیت سازه 7 طبقه دارای طبقه هفتم نرم تحت بار یکنواخت……………….99
نمودار4-15: مقایسه منحنی­های ظرفیت سازه 7 طبقه دارای طبقه اول نرم تحت بار استاتیکی………………….99
نمودار4-16: مقایسه منحنی­های ظرفیت سازه 7 طبقه دارای طبقه هفتم نرم تحت بار استاتیکی………………100
نمودار4-17: مقایسه منحنی­های ظرفیت سازه 9 طبقه دارای طبقه سوم نرم تحت بار یکنواخت………………100
نمودار4-18: مقایسه منحنی­های ظرفیت سازه 9 طبقه دارای طبقه هشتم نرم تحت بار یکنواخت…………….101
نمودار4-19: مقایسه منحنی­های ظرفیت سازه 9 طبقه دارای طبقه سوم نرم تحت بار استاتیکی……………….101
نمودار 4-20: مقایسه منحنی­های ظرفیت سازه 9 طبقه دارای طبقه هشتم نرم تحت بار استاتیکی…………….102
 
 
 
 
 
 
 
فهرست جداول
فصل دوم: کلیات مدلسازی
جدول 2-1: جزئیات مقاطع قاب 7 طبقه……………………………………………………………………………………….40
جدول 2-2: جزئیات مقاطع قاب 9 طبقه……………………………………………………………………………………….40
 
فصل سوم: تحلیل طیفی
جدول 3-1: مقادیر جابجایی طبقات نسبت به مکان طبقه نرم در قاب 7 طبقه (متر)………………………………..51
جدول 3-2: مقادیر جابجایی طبقات نسبت به مکان طبقه نرم در قاب 9 طبقه (متر) ……………………………….52
جدول 3-3: مقادیر دریفت طبقات نسبت به مکان طبقه نرم در قاب 7 طبقه (متر) )……………………………….57
جدول 3-4: مقادیر دریفت طبقات نسبت به مکان طبقه نرم در قاب 9 طبقه (متر)………………………………….58
جدول 3-5: مقادیر نیروی برشی طبقات نسبت به مکان طبقه نرم در قاب 7 طبقه (نیوتن)………………………..63
جدول 3-6: مقادیر لنگر خمشی طبقات نسبت به مکان طبقه نرم در قاب 7 طبقه (نیوتن.متر)…………………..64
جدول 3-7: مقادیر نیروی برشی طبقات نسبت به مکان طبقه نرم در قاب 9 طبقه (نیوتن)………………………..65
جدول 3-8: مقادیر لنگر خمشی طبقات نسبت به مکان طبقه نرم در قاب 9 طبقه (نیوتن.متر)…………………..66
جدول 3-9: مقادیر پریود سازه نسبت به تغییر مکان طبقه نرم در قاب 7 طبقه……………………………………….74
جدول3-10: مقادیر پریود سازه نسبت به تغییر مکان طبقه نرم در قاب 9 طبقه………………………………………75
جدول 3-11: پریود تحلیلی و آیین­نامه­ای قاب 7 طبقه…………………………………………………………………….76
جدول 3-12: پریود تحلیلی و آیین­نامه­ای قاب 9 طبقه…………………………………………………………………….76
جدول 3-13: مقایسه نمودارها و جداول قاب 7 طبقه و 9 طبقه………………………………………………………….77
 
فصل چهارم: تحلیل استاتیکی غیرخطی
جدول 4-1: مقادیر ضریب ……………………………………………………………………………………………………83
جدول 4-2: مقادیر ضریب ………………………………………………………………………………………………….84
جدول 4-3: مقادیر ضریب ………………………………………………………………………………………………….84
جدول 4-4: نحوه پخش مفاصل پلاستیک در قاب 7 طبقه تحت بار استاتیکی……………………………………103
جدول 4-5: نحوه پخش مفاصل پلاستیک در قاب 9 طبقه تحت بار استاتیکی……………………………………104
جدول 4-6:مطالعات انجام شده توسط یوسف دینار در مورد چگونگی پخش مفاصل پلاستیک در سازه……………………………………………………………………………………………………………………………………105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فصل     1
تئوری مساله و
اهمیت موضوع
 
 
1-1- مقدمه
زلزله به عنوان یک پدیده مخرب در اکثر مناطق دنیا ایمنی سازه­ها و زندگی ساکنان آن را در معرض تهدید قرار داده است، به طوری که کاهش خسارات جبران­ناپذیر پدیده زلزله همواره هدف نهایی محققین و دانشمندان علم مهندسی زلزله بوده است. عامل زلزله موجب اهمیت طراحی سازه­ها در کشورهای لرزه­خیز می­باشد. اصولاً طرح لرزه­ای سازه­ها بدون داشتن درک درستی از نحوه­ خرابی‌های ایجاد شده توسط زلزله، غیر ممکن است. طرح لرزه­ای فقط عبارت از تحلیل، محاسبه و برآورده کردن شرایط آیین­نامه نیست بلکه پارامترهای متنوع دیگری نیز در آن دخالت دارند. آگاهی دقیق از رفتار ساختمان­ها در زلزله موضوع اساسی در علم مهندسی زلزله است. بررسی انواع خرابی‌های ایجاد شده بر اثر زلزله­های گذشته، همواره یکی از زمینه ­های مهم در مهندسی زلزله بوده است. دلایل این امر عبارتند از روزآمد کردن آیین­نامه­ های طراحی و نیز آموختن درس­هایی که مانع از خسارت­های مشابه در زلزله­های بعدی شود. وقوع زمین لرزه آزمونی طبیعی برای رفتار سازه بوده و همواره به عنوان مهمترین رخداد در زمینه مهندسی زلزله مورد توجه مهندسان بوده است. آشنایی و توجه دقیق به مکانیزم­ های مختلف خرابی و شکست، یکی از ابزار عمده برای روزآمد کردن آیین­نامه­ های طراحی است. از این آزمایش طبیعی می­توان برای طراحی و ساخت بهینه سازه­ها استفاده کرد.
ایران نیز به دلیل قرارگیری بر روی کمربند زلزله آلپ-­هیمالیا جزء کشورهای لرزه­خیز محسوب می­ شود که هر چند سال یکبار زلزله­ای ویرانگر در نقاط مختلف کشور رخ می­دهد. در بین سال­های 1900 تا 2010 میلادی 13655 زلزله با بزرگای بیش از 4 ریشتر در ایران رخ داده که از این تعداد 117 زلزله با بزرگای بیشتر از 6 ریشتر بوده است. ممکن است گاهی این تصور پیش آید که زلزله قاتل جان انسان­هاست. اما واقعیت چیز دیگری است: این زلزله نیست که جان انسان­ها را می­گیرد، بلکه سازه­های ضعیف مسبب آن هستند. بنابراین باید رفتار سازه­ها را در زلزله بیشتر شناخت و آیین­نامه­ ها و روش­های اجرایی را بهبود بخشید.
در اثر زلزله، انرژی زیادی از درون زمین آزاد شده که این انرژی باعث تکان خوردن صفحات پوسته می­گردد. لرزش و تکان زمین باعث به وجود آمدن پارامترهای زمین (جابجایی، سرعت و شتاب) می­ شود. در مورد زلزله آنچه که باعث حرکت سازه می­ شود تکان­های زمین بوده و هیچ نیروی خارجی به سازه وارد نمی­ شود. پس از تکان زمین، ابتدا پی و سپس ستون­ها و در نهایت سقف­ها تکان می­خورند بنابراین انرژی زلزله به صورت جابجایی به پی سازه وارد می­ شود و چون سازه­ دارای جرم قابل ملاحظه­ای می­باشد، این جرم سازه است که منجر به ایجاد شتاب، حرکت سازه و نیروی اینرسی در سازه می­گردد. با تکان پی، جابجایی به اندازه Δ در سازه ایجاد می­ شود که ابتدا ستون­ها و سپس سقف­ها دچار این جابجایی می­شوند.
 
 
 
 
 
 
 
 
 
 

موضوعات: بدون موضوع  لینک ثابت
 [ 07:42:00 ب.ظ ]
 
مداحی های محرم