پایان نامه ارشد رشته عمران مهندسی و مدیریت ساخت:نفوذپذیری بتن ها تحت اعمال توامکربناسیون و نفوذ یون کلراید |
1-3- اهداف پایان نامه 3
1-4- چارچوب پایان نامه 3
فصل دوم 5
بر ادبیات فنی 5
2-1- مقدمه 5
2-1-1-……………………………………………………………. ساختار بتن 7
2-1-2-………………………………………… ساختار فاز سنگدانه 7
2-1-3-………………………. ساختار سیمان خمیر هیدراته 7
2-1-4-…………….. مواد جامد در خمیر هیدراته شده 8
2-1-5- فضاهای خالی در خمیر سیمان هیدراته شده 9
2-1-6-……………………….. فضاهای بین لایه ای در C–S–H 9
2-1-7-…………………………………………………….. فضاهای مویینه 10
2-1-8-……………………………………………………….. حباب های هوا 10
2-1-9-…………………………………………………….. آب بین لایه ای 11
2-1-10-……………………………………………………………………. مقاومت 11
2-2- نفوذ یون کلراید 13
2-2-1- مكانیزمهای انتقال یون كلرید و عوامل مؤثر بر آن 14
2-3- کربناسیون 17
2-3-1-… فرایند شیمیایی- فیزیکی کربناتاسیون 18
2-3-2- عوامل موثربر فرایند کربناتاسیون بتن 18
2-3-3- تاثیر عوامل خارجی (شرایط محیطی) بر کربناتاسیون بتن 26
2-3-4- تاثیرشرایط اجرایی بر کربناتاسیون بتن 29
2-3-5-…………….. تاثیر کربناتاسیون بر خواص بتن 31
2-4- تاثیر کربناتاسیون بر یون کلرید 33
2-4-1- تاثیر کربناتاسیون بر مقیدسازی یون کلرید 33
2-4-2- پدیده توام کربناسیون و نفوذ یون کلراید 34
2-4-3-………………………………………………………… بررسی پدیده 34
2-4-4- انواع مدل های تاثیر توامان کربناسیون و نفوذ یون کلراید 38
2-4-4-4-……………………………………… مدل song و همکاران 40
2-4-5- رفتار کربناسیون و نفوذ کلراید به طور همزمان 41
فصل سوم 43
3- مصالح، روش های ساخت و آزمایش ها 43
3-1- مقدمه 43
3-2- دوده سیلیس 43
3-2-1-…………………………………. مواردمصرف دوده سیلیس 44
3-2-2-…………….. اثر واکنش پوزولانی دوده سیلیس 44
3-2-3-……………….. میزان حرارت زایی دوده سیلیس 44
3-3- مشخصات مصالح مصرفی 45
3-3-1-………………………………………………………………………. سیمان 45
3-3-2-…………………………………………………………………. سنگدانه 45
3-3-3-……………………………………………………………………………… آب 46
3-3-4-………………………………………………… فوق روان کننده 46
3-4- ساخت و عملآوری آزمونههای بتنی 47
3-4-1-………………….. طرح اختلاط نمونه آزمایشگاهی 47
3-4-2-………………………………………………………………. ساخت بتن 51
3-5- آزمایش های فیزیکی 55
3-5-1-……………….. آزمایشهای تعیین نفوذ كلراید 55
3-5-2- آزمایشهای خواص مكانیكی و نفوذپذیری بتن 56
3-6- آزمایشهای صورت گرفته در آزمایشگاه 56
3-6-1- آزمایش تسریعشده نفوذ یون کلرید در بتن(RCPT) 56
3-6-2- آزمایش مقاومت الکتریکی سطحی به روش ونر 59
3-6-3-…………………………………………………….. مقاومت فشاری 61
3-4-6-…………………………………. آزمایش جذب آب موئینه 62
3-6-5-………………………………. تعیین عمق کربناتاسیون 62
3-6-6-……………….. تعیین میزان نفوذ یون کلراید 63
فصل چهارم 65
4- توسعه دستگاه 65
4-1- مقدمه 65
4-2- لوازم استفاده شده در ساخت دستگاه 66
4-3- هدف ساخت دستگاه 66
4-4- اجزاء دستگاه 68
4-4-1-……………………………………………… شمای کلی دستگاه 68
4-4-2-…………………………………………… طراحی مدار فرمان 76
4-4-3-……………………………………… رگولاتور و فشار شکن 77
4-4-4- پیچ های کنترل کننده سطح آب توسط فلوتر 78
4-4-5-……………………………… صافی – پمپ آب – یکطرفه 79
4-4-6-…………… غلظت سنج، رطوبت سنج و دما سنج 81
4-4-7-…………………………………………… دستگاه رطوبت گیر 83
4-5- نحوه کار با دستگاه 83
فصل پنجم 95
5- نتایج آزمایشها و تجزیه و تحلیل آن ها 95
5-1- مقدمه 95
5-2- مقاومت فشاری نمونه ها 95
5-3- آزمایش تسریعشده نفوذ یون کلرید در بتن (RCPT) 96
5-4- آزمایش مقاومت الکتریکی سطحی به روش ونر 97
5-5- آزمایش جذب آب موئینه 98
5-5-1-………………………………. تعیین عمق کربناتاسیون 99
5-6- تعیین میزان نفوذ یون کلراید 100
5-7- مقایسه نتایج آزمایشها 101
5-7-1- بررسی اثر کربناسیون و نفوذ یون کلراید در مقاومت فشاری بتن 101
5-7-2-…………………………………………… بررسی جذب موئینه 106
5-7-3-………………………………. بررسی مقاومت الکتریکی 108
5-7-4- بررسی آزمایش تسریع شده نفوذ یون کلراید 110
5-7-5-……………………………………. بررسی عمق کربناسیون 111
5-7-6-………………………………. بررسی نفوذ یون کلراید 113
5-7-7-………………………… بررسی در اندازه نانو TEM 114
5-7-8- بررسی روابط بین مشخصات مکانیکی و فیزیکی بتن ها 117
فصل ششم 119
6- نتیجه گیری و پیشنهادات 119
6-1- نتایج 119
6-2- پیشنهادات 122
7- فهرست مراجع 123
پیوست 128
8- دستآورد ها و تقدیر و تشکر 128
8-1- دستاوردهای پایان نامه 128
8-2- تقدیر و تشکر 130
فهرست اشکال
عنوان صفحه
شکل 2‑1 محدوده های ابعاد قسمت های جامد و فضاهای خالی در خمیر سیمان هیدراته شده 9
شکل 2‑2 انواع آب های موجود در ساختار سیلیکات کلسیم هیدراته شده [5]. 11
شکل 2‑3 ترتیب مقاومت در برابر کربناتاسیون برای انواع سیمانها ]43[ 20
شکل 2‑4 اثر چگالی بتن بر عمق کربناتاسیون ]43[. 22
شکل 2‑5 سهولت در تشخیص جبهه کربناتاسیون با افزایش نسبت آب به مواد سیمانی 23
شکل 2‑6 تاثیر میزان ماسه در بتن بر کربناتاسیون ]43[ 24
شکل 2‑7 تاثیر غلظت ماسه در ملات بر ضریب نفوذپذیری دیاکسید کربن در بتن ]23[. 25
]24[ 26
شکل 2‑9 روند روبه رشد غلظت دیاکسیدکربن در جو ]49[ 27
شکل 2‑10 تاثیر فاصله نمونه های بتنی از ساحل بر کربناتاسیون ]51[ 29
شکل 2‑11 تاثیر میزان تراکم بتن بر عمق کربناتاسیون بتن ]19[. 31
شکل 2‑12 الگوریتم كلی نرمافزار CONDOUR 39
شکل 2‑13 شمای كلی بررسی دوام بتن تحت اثر نفوذ گاز و گرما به بتن 41
شکل 2‑14رفتار توامان کربناسیون و نفوذ یون کلراید 42
شکل 3‑1نمودار دانه بندی سنگدانه 46
شکل 3‑2 دستگاه میکسر – مخلوط کننده سنگدانه و سیمان 52
شکل 3‑3 ساخت لجن دوده سیلیس 53
شکل 3‑4 مخلوط کردن آب و هم زدن لجن 53
شکل 3‑5 مخلوط کردن تدریجی لجن دوده سیلیس 53
شکل 3‑6 اندازه گیری اسلامپ 54
شکل 3‑7 مخزن آب – جهت نگهداری بتن تا 90 روز 55
شکل 3‑8 دسیکاتور و نحوه آمادهسازی نمونه ها جهت آزمایش RCPT 57
شکل 3‑9 تصویر شماتیک دستگاه RCPT 58
شکل 3‑10 دستگاه و محفظههای آزمایش RCPT 58
شکل 3‑11 نمایی از شکل شماتیک دستگاه و مراحل انجام آزمایش دستگاه سنجش مقاومت الکتریکی 60
شکل 3‑12 میزان تاثیر ابعاد نمونه بر مقادیر ضریب صحیح مقاومت الکتریکی ویژه 61
شکل 3‑13 نمایی از مراحل برش نمونه ها 62
شکل 3‑14 نمایی از مراحل مختلف آزمایش تعیین عمق کربناتاسیون و تعیین PH اعماق بتن 63
شکل 3‑15 محلول نیترات نقره 63
شکل 3‑16 نمایی از مراحل مختلف آزمایش تعیین میزان نفوذ کلراید 64
شکل 4‑1 دستگاه ساخته شده نگهداری بتن در چرخه همزمان كربناسیون و انتشار یون كلرید 69
شکل 4‑2 شیر برقی مربوط به آب 70
شکل 4‑3 شیر برقی مربوط به گاز 70
شکل 4‑4 لوله ارتباطی آب به قطر یک اینچ 71
شکل 4‑5 لوله ارتباطی گاز به قطر دو اینچ 71
شکل 4‑6 اتصال لوله های دستگاه با بهره گرفتن از دستگاه اتو 72
شکل 4‑7 مراحل تکمیل لوله کشی دستگاه 72
شکل 4‑8 آب بندی لوله های ارتباطی از داخل مخازن 72
شکل 4‑9 شیر تخلیه هوای مخازن 73
شکل 4‑12 تابلو برق و فرمان 73
شکل 4‑11 لوازم داخلی تابلو برق 75
شکل 4‑12 برنامه نویسی PLC 77
شکل 4‑13 قطعه PLC استفاده شده در این دستگاه – شرکت FATEK کره ای 77
شکل 4‑14 فشار شکن و کپسول گاز دی اکسید کربن 78
شکل 4‑17 پیچ های فلوتر 78
شکل 4‑16 پمپ آب و صافی ها 79
شکل 4‑17 صافی و یکطرفه 79
شکل 4‑18 پمپ آب با قدرت بالاتر 80
شکل 4‑19 ترانسمیتر کمیت های محیطی با پورت سریالMod Bus TM-1280 تولید داخلی – شرکت تیکا 81
شکل 4‑20 سنسور TM-1280 تولید داخلی – شرکت تیکا 81
شکل 4‑21 شمای داخلی سنسور 81
شکل 4‑22 مشخصات فنی سنسور 82
شکل 4‑23 اتصالات و ترمینال های سنسور 82
شکل 4‑24 دستگاه رطوبت گیر 83
شکل 4‑25 کپسول گاز و نکات ایمنی 84
شکل 4‑26 نکات ایمنی محیطی 84
شکل 4‑27 مرحله اول کار با دستگاه 84
شکل 4‑28 مرحله دوم کار با دستگاه – ورود رمز 84
شکل 4‑29 مرحله سوم کار با دستگاه – ورود به تنظیمات 85
شکل 4‑30 مرحله چهارم کار با دستگاه – تنظیمات جزر و مد و شیر برقی مربوط به آب 85
شکل 4‑31 مرحله پنجم کار با دستگاه – تنظیمات دستگاه رطوبت گیر 85
شکل 4‑32 روشن بودن رطوبت گیر 86
شکل 4‑33 مرحله ششم کار با دستگاه – تنظیمات شیر برقی مربوط به گاز 86
شکل 4‑34 مرحله هفتم کار با دستگاه – شروع به کار دستگاه 87
شکل 4‑35 علامت نشانگر روشن بودن شیر برقی مربوط به گاز 87
شکل 4‑36 باز کردن شیر کپسول گاز 88
شکل 4‑37 تنظیم فشار گاز دی اکسید کربن 88
شکل 4‑38 هواگیری مخازن 89
شکل 4‑39 صفحه اصلی HMI 89
شکل 4‑40 نمودار افزایش یا کاهش گاز دی اکسید کربن 90
شکل 4‑41 میزان افزایش یا کاهش دما 90
شکل 4‑42 نمودار افزایش یا کاهش رطوبت 91
شکل 4‑43 میزان رطوبت قبل از شروع به کار کردن دستگاه رطوبت گیر 91
شکل 4‑44 میزان رطوبت پس از شروع به کار کردن دستگاه رطوبت گیر 91
شکل 4‑45 روش ذخیره اطلاعات صفحه نمایش در حافظه جانبی 92
شکل 4‑46 ذخیره سازی اطلاعات 92
شکل 4‑47 نمونه صفحه نمایش ذخیره شده. 92
شکل 4‑48 تنظیمات برنامه 93
شکل 4‑49 شمای کلی دستگاه 94
شکل 5‑1 نتایج آزمایش مقاومت فشاری در سن 28 روز 103
شکل 5‑2 نتایج آزمایش مقاومت فشاری در سن 90 روز 103
شکل 5‑3 S3510 105
شکل 5‑4 S350 105
شکل 5‑5 S4510 106
شکل 5‑6 S450 106
شکل 5‑7 نتایج جذب موئینه 28 روزه 107
شکل 5‑8 نتایج جذب موئینه 90 روزه 108
شکل 5‑9 نتایج آزمایش 28 روزه مقاومت الکتریکی (kHz) 109
شکل 5‑10 نتایج آزمایش 90 روزه مقاومت الکتریکی (kHz) 110
شکل 5‑11 نتایج آزمایش RCPT 28 و 90 روزه 111
شکل 5‑12 نتایج عمق کربناسیون 28 و 90 روزه 112
شکل 5‑13 S3510 112
شکل 5‑14 S350 113
شکل 5‑15 S3510کربناته شده 113
شکل 5‑16 نتایج نفوذ یون کلراید 28 و 90 روزه 114
شکل 5‑17 ریز ساختار بتن با 10 درصد دوده سیلیس S3510 شاهد 115
شکل 5‑18 ساختار غیر کریستالی S3510شاهد 115
شکل 5‑19 ریز ساختار بتن با 10 درصد دوده سیلیس S3510 کربناته 116
شکل 5‑20 ساختار غیر کریستالی S3510کربناته 116
شکل 5‑21 رابطه شار عبوری 28 و 90 روزه با مقاومت الکتریکی بتن کربناته 117
شکل 5‑22 رابطه شار عبوری 28 و 90 روزه با مقاومت الکتریکی بتن شاهد 118
شکل 8‑1 برگه ثبت اختراع 128
شکل 8‑2 پوستر جشنواره خوارزمی 129
شکل 8‑3 تائیدیه دانشگاه علم و صنعت ایران 130
شکل 8‑4 تائیدیه دانشگاه صنعتی امیرکبیر 130
فهرست جداول
عنوان صفحه
جدول 2‑1 پارامترهای موثر در نفوذ یون کلرید به بتن 17
جدول 2‑2 اثر نرمی بلین بر عمق کربناتاسیون بتن[38] 21
جدول 2‑3 طرحهای اختلاط بتن 36
جدول 2‑4 تركیبات محلول 37
جدول 2‑5 عمق نفوذ كلراید 37
جدول 3‑1 ترکیبات شیمیایی دوده سیلیس و سیمان 45
جدول 3‑2 مشخصات سنگدانه ها در اندازه گیری های اولیه برای بدست آوردن طرح اختلاط 48
جدول 3‑3 طرح اختلاط نمونه های بتنی 50
جدول 3‑4 دستهبندی بتن براساس استاندارد ASTM C1202 58
جدول 3‑5 تبدیل نتایج آزمایش ونر به میزان نفوذ یون کلرید 61
) 95
) 96
جدول 5‑3 نتایح آزمایش RCPT (کولومب) 97
جدول 5‑4 نتایح آزمایش مقاومت الکتریکی (kHz) 98
جدول 5‑5 نتایح آزمایش جذب موئینه (درصد تغییر وزن نمونه ها) 99
جدول 5‑6 نتایج عمق کربناسیون (میلیمتر) 100
جدول 5‑7 نتایج نفوذ یون کلراید 101
فصل اول
1- مقدمه
1-1- مقدمه و اهمیت موضوع
بتن، به عنوان پرمصرفترین و مهمترین مصالح ساختمانی قرن بیستم معرفی شده است. مصرف سرانۀ بتن در دنیا در حدود یک تن است. لذا، بتن پس از آب، بیشترین مادهای است که بشر مصرف می کند. این، در حالی است که فقط حدود دو قرن از ابداع سیمان و بتن گذشته است و این مصرف به سرعت در حال فزونی میباشد [1و2].
دوام بتن از جمله مسائلی است که امروزه در مباحث توسعه پایدار از اهمیت بالایی برخوردار بوده و عمر سازه های شهری را تحت الشعاع خود قرار می دهد و در آینده ای نزدیک از مهمترین شرایط پذیرش بتن های در حال ساخت، طول عمر آن خواهد بود که باید قبل از ساخت، آزمایش های لازم بر روی آن صورت گیرد.
با توجه به شرایط واقعی شهری همانند تهران، بتن دائما در معرض کربناسیون و گاه نفوذ یون کلرید به طور همزمان است. از یک سو آلاینده ها با ورود گازهای سمی و مخرب و از سوی دیگر فعالیت های مربوط به جلوگیری از یخ زدگی معبر شهری با ورود مواد مضر دارای کلرید و نمک، به سلامت بتن آسیب جدی وارد می کند.
تاکنون آزمایش های مختلفی برای بررسی دوام بتن در برابر کربناسیون(نفوذ و تاثیر گازهای موجود در هوا) و در برابر نفوذ یون کلراید (نفوذ و تاثیر گازهای موجود در نمک و آب) انجام شده است اما در هیچیک از آزمایش ها در هیچ نقطه ای از دنیا تا، به حال تاثیر این دو عامل بسیار مخرب به طور همزمان بررسی نشده است و از این حیث نیز این پروژه دارای ارزشی مضاعف است.
1-2- ضرورت انجام تحقیق
هم اکنون در تمامی پروژه های عمرانی بزرگ دنیا، تمامی آزمایش های دوام برای بتن انجام می گیرد که می تواند عمر پروژه را افزایش دوچندانی دهد. در راستای موارد فوق الذکر، بررسی دوام بتن آن پروژه مهم شهری و کشوری، از لحاظ حملات کلریدی و کربناسیون، بسیار حیاتی خواهد بود و می تواند عمر پروژه را افزایش چشمگیری دهد. با انجام چنین پروژه ای عمر پروژه های شهری و کشوری افزایش چشمگیری پیدا خواهد کرد زیرا می توان قبل از انجام بتن ریزی به بهینه عمر بتن دست پیدا نمود و آن را پیش بینی کرد. با توجه به این تخمین و پیش بینی، چرخه های تعمیر و نگهداری نیز به تعویق افتاده و عمر سازه های شهری افزایش چشمگیری خواهد یافت و این امر صرفه جویی ارزی بسیار بالایی را به ارمغان خواهد داشت.
برای سنجش چنین مواردی، ساخت دستگاهی که بتواند علاوه بر شبیه سازی حملات کلریدی، کربناسیون را نیز توامان اعمال کند، ضروری می نماید. تا کنون در بررسی های آزمایشگاهی عوامل مخرب کربناسیون و نفوذ یون کلرید ، به طور جداگانه انجام می شده است و نتایج واقعی بدست نمی آمده است و متعاقب آن، نتایج حاصل از بررسی دوام نمونه های بتنی از واقعیت به دور بوده است زیرا در حالت طبیعی و در محیط هایی که بتن ریزی انجام می شود، گاز CO2 ناشی از دود کارخانه ها و اتومبیل ها و نیز یون های مضر کلرید ناشی از آب باران و نمک پاشی سطح معابر شهری وجود دارد.
هدف استفاده از این دستگاه آن است که با بکارگیری آن در محیط های آزمایشگاهی، نگهداری نمونه های بتنی در شرایطی انجام گیرد که بتواند تحت کربناسیون(نفوذ و تاثیر گازهای موجود در هوا) و نیز نفوذ یون کلرید(نفوذ و تاثیر گازهای موجود در نمک و آب) به طور همزمان قرار گرفته و بتواند جوابگوی شرایط واقعی محیطی که بتن در آن قرار می گیرد، باشد و نتایج آزمایش های صورت گرفته بر روی بتن به واقعیت نزدیک تر شود. ضمنا در کارخانه ها و کارگاه های بتن سازی که بحث کنترل دوام بتن بسیار مهم است، و نیز در پروژه های پل سازی، اعم از پل های اتومبیل رو و پل های راه آهن و نیز در بندرسازی، می توان از این دستگاه که قابل حمل است استفاده نمود تا از نتایج آزمایشات کاملا اطمینان حاصل کرد. در صورت دانستن نتایج دقیق، شاهدکاهش هزینه های تعمیر و نگهداری خواهیم بود زیرا با تغییر در طرح اختلاط بتن، عمر بتن افزایش پیدا خواهد کرد. بهتر است از این دستگاه برای بررسی دوام بتن هایی که در پروژه های مناطق جنوبی کشورمان تولید می شود، که خرابی ناشی از کربناسیون و حمله یون های کلریدی، بالاست استفاده گردد تا بتوان به نتایج دقیق تری در آزمایشات نمونه های بتنی دست پیدا کرد و بدین وسیله طرح اختلاط بتن بهبود چشمگیری پیدا کرده و عمر سازه های بتنی افزایش قابل ملاحظه ای یابد زیرا بتن جدید حاصل از آزمایشاتی که به شرایط واقعی نزدیک تر باشد، عمر بیشتری خواهد داشت.
1-3- اهداف پایان نامه
در این پایان نامه بررسی کربناسیون و نفوذ یون کلرید به طور همزمان بر روی بتن های با نسبت آب به سیمان مختلف و همچنین بتن با دوده سیلیس و بتن خودتراکم صورت خواهد گرفت و سپس به مدلسازی و ارائه مدلی که بتواند جوابگوی شرایط واقعی محیطی که بتن در آن قرار می گیرد، پرداخته خواهد شد. ضمنا برای انجام آزمایش ها، دستگاهی که بتواند شبیه سازی دقیق و کاملی از شرایط کربناسیون و حمله یون کلریدی را انجام دهد، ساخته خواهد شد تا بتوان تاثیر همزمان این دو عامل مخرب بتن را سنجید.
1-4- چارچوب پایان نامه
پایان نامه حاضر مشتمل بر شش فصل میباشد، که سعی شده مطالب مورد نیاز پایان نامه به صورت موجز با رعایت حفظ مفهوم به ترتیب اهمیت آورده شود.
فصل اول “مقدمه”
در این فصل مقدمهای در مورد کلیات و اهداف پایان نامه آورده شده و لزوم انجام پایان نامه ذکر شده است.
فصل دوم ” بر ادبیات فنی”
در این فصل به اختصار در مورد شناخت پدیده کربناسیون، نفوذ یون کلراید و اعمال توامان این دو پدیده بررسی شده است.
فصل سوم “مواد و مصالح و روش های آزمایش”
در این فصل در مورد مصالح استفاده شده در تحقیق حاضر بحث شده است و روش های آزمایشی که بتن ها با آن آزمایش شده اند به طور کامل بررسی شده است.
فصل چهارم “دستگاه نگهداری در بتن در چرخه همزمان نفوذ یون کلراید و کربناسیون”
در این بخش به طور کامل نحوه ساخت دستگاه ، ایده اولیه و تمام جوانب آن توضیح داده شده است. ضمنا تمام مراحل استفاده از دستگاه به تفصیل شرح داده شده است.
فصل پنجم “نتایج آزمایش ها و تجزیه و تحلیل آن ها “
در این فصل پس از ارائه نتایج تمام آزمایش های صورت گرفته بر بتن های نگهداری شده در محیط استاندارد، آب نمک، چرخه همزمان نفوذ یون کلراید و کربناسیون و تحت اعمال کربناسیون به تنهایی، تمامی نتایج تحلیل و بررسی شده است.
فصل ششم “نتیجه گیری و پیشنهاد “
در این فصل سعی شده نتایج حاصل از بررسیها و ارزیابیهای صورت گرفته به صورت خلاصه آورده شده و به سؤالات مطرح شده در قسمت اهداف پایان نامه پاسخ داده شود و در نهایت پیشنهادهایی برای ادامه تحقیق در آینده ارائه گردد.
فصل دوم
2- بر ادبیات فنی
2-1- مقدمه
در این فصل به بررسی و مرور تحقیقات انجام شده در زمینه نفوذ یون کلراید، اعمال کربناسیون و اعمال توامان نفوذ یون کلراید و کربناسیون می پردازیم. همانطور که مستحضرید، بتن پر مصرف ترین مصالح ساختمانی است. این ماده معمولا از مخلوط نمودن سیمان پرتلند، ماسه، سنگ شکسته و آب تشکیل می شود. در اغلب کشورهای جهان نسبت مصرف بتن به فولاد، از 10 به 1 نیز فراتر رفته است. میزان مصرف امروز بتن در جهان بالغ بر 5/5 میلیون تن در سال است.
دلایل زیادی برای این پر مصرف ترین مصالح مهندسی ذکر شده است:
بتن مقاومت بالایی در مقابل آب دارد. برخلاف چوب و فولاد معمولی، توانایی بتن برای مقاومت در مقابل آب و عدم ایجاد خرابی در آن، از مصالحی ایده آل برای کنترل و ذخیره کردن و حمل و انتقال آب ساخته است.
سهولت شکل دادن به آن برای ساخت اجزای مختلف سازه که به راحتی به درون قالب ها با شکل های مختلف ریخته می شود. [1].
سیمان پرتلند و سنگدانه به آسانی قابل دسترسی و ارزان می باشند.
بتن مسلح که در آن از فولاد و بتن استفاده می شود، طوری طراحی می شود که دو مصالح بتن و فولاد تواما برای تحمل نیروهای وارد به قطعه مقاومت کنند.
بتن پیش تنیده، که در آن با کشیدن کابل های پیش تنیدگی و آرماتورها در بتن فشاری اولیه ایجاد می کنند، برای تحمل تنش های کششی بیشتر در حین بارگذاری قطعات، طراحی شده اند. [2].
بتن به عنوان یکی از مهمترین مصالح ساختمانی در جهان مطرح میباشد و با توجه به اینکه کمتر از دو قرن از اختراع آن با ترکیبات امروزی میگذرد، کماکان رفتار آن در شرایط مختلف در هالهای از ابهام قرار دارد. بتن علیرغم سادگی آشکار آن، دارای ساختار بسیار پیچیدهای است و روابط بین ساختار ماده و مشخصات آن، که معمولاً برای درک و کنترل مواد مختلف سودمند است، را نمیتوان به سادگی به کار برد. بتن شامل یک توزیع غیرهمگن از تعداد زیادی اجزاء جامد است و نیز دارای منافذی است که دارای شکلها و اندازه های گوناگونی میباشند. تمامی این منافذ و یا بخشی از آنها از محلولهای قلیایی پر شده اند. روشهای تحلیلی علم مواد و مکانیک جامدات، در مصنوعاتی که نسبتاً همگن هستند و پیچیدگی بسیار کمتری از بتن دارند به خوبی به کار برده می شود. از جمله این مواد میتوان به فولاد، پلاستیکها و سرامیکها اشاره نمود. به نظر نمیرسد که این روشها بتوانند در مورد بتن خیلی موثر واقع شوند[1]. در واقع واژه بتن (Concrete) از واژه لاتین (Concretus) به معنای “رشد کردن” اشتقاق یافته است [1] و بنا بر دانش تکنولوژی بتن فرایند هیدراتاسیون سیمان و محصولات حاصل از آن تا سالها پس از ساخت ادامه خواهند داشت. این امر سبب مطرح شدن بتن به عنوان یک موجود زنده میباشد. نیاز به آب برای ادامه حیات و بارورتر شدن آن، تاثیرپذیری از شرایط محیطی مانند دما، رطوبت و یونهای مخرب، تغییر خواص با گذشت زمان و بالاخره پیری مصالح تشکیل دهنده آن مؤید زنده بودن این ماده میباشد [2].
در مقایسه با سایر مواد، ساختار بتن یک مشخصه ایستا و ثابت از این ماده نیست. دلیل این امر نیز آن است که دو جزء از سه جزء کاملاً متمایز در ساختار بتن، یعنی خمیر سیمان و ناحیه انتقال بین خمیر و سنگدانه با گذشت زمان و به طور مستمر تغییر می کنند، از طرفی دیگر بر خلاف سایر مصالح، که به صورت یک “کالای آماده برای مصرف” ارائه میشوند، بتن مادهای است که اغلب میباید درست قبل از مصرف در محل کارگاه یا نزدیک آن ساخته شود. از این رو اگر در دو مرحله بتنی با مشخصات یکسان در دو کارگاه متفاوت ساخته شود، نمیتوان از رفتار یکسان آنها مطمئن بود.
به طور کلی، به هر ماده یا محصولی که از یک ماده چسبنده با خاصیت سیمانی شدن، تشکیل شده باشد، بتن اطلاق می شود. تاریخ ساخت و کاربرد بتن به عنوان مصالح ساختمانی از قدمت چند هزار ساله برخوردار میباشد و سازههای ساخته شده از این جنس در ایران و جهان گواه این امر میباشند. با این تعریف، بتن طیف وسیعی از محصولات را شامل می شود ولی در اینجا منظور از بتن، ماده ساخته شده با سیمان پرتلند، آب و سنگدانه (و افزودنی) میباشد.
ساخت بتن با سیمان پرتلند پس از پیدایش سیمان پرتلند در سال 1827 آغاز شده و در طی این دوران به یکی از پرمصرفترین مصالح در صنعت ساختمان تبدیل شده است که این خود گواه پارامترها و ویژگیهای منحصر بفرد آن میباشد. مقاومت عالی بتن در مقابل آب، سهولت فرمپذیری بتن در اشکال و اندازه های مختلف، ارزانتر بودن و سهولت دسترسی به مصالح تشکیلدهنده آن تقریباً در هر نقطه از جهان، از علل متعدد این امر میباشند. طی سالیان گذشته، نوع و کیفیت مصالح بتنی و روشهای ساخت به طور قابل ملاحظهای تغییر کرده است.
اجزاء اصلی تشكیلدهندة بتن، عبارتند از سنگدانه، سیمان و آب. در سالهای اولیه، استفاده از بتن به دلیل کم بودن مقاومت کششی آن، محدودتر بود ولی در اواسط قرن نوزدهم میلادی برای اولین بار از تسلیح بتن استفاده شد و به این ترتیب با لاغر شدن اعضای بتنی، امکان طرح دهانههای بزرگتر و استفاده از تنشهای طراحی بالاتر، به عنوان یکی از مهمترین پیشرفتها در زمینة استفاده از بتن فراهم گردید. با توجه به اینکه مواد اولیه برای ساخت بتن در همه جای دنیا در دسترس است، استفاده از آن در سطح دنیا از همان ابتدا رو به گسترش گذاشت.
بتن از سه فاز مختلف تشکیل شده است. این فازها عبارتند از: سنگدانه، خمیر و ناحیة انتقال. مشخصات مکانیکی و دوام بتن به هر سه فاز ذکر شده وابسته است. بنابراین برای ارزیابی و تعیین مشخصات بتن باید هر سه فاز بررسی شوند. این بررسیها باید از دو دیدگاه صورت گیرد. دیدگاه اول، بررسی هر یک از سه فاز به صورت مستقل و دیدگاه دوم، بررسی اثر این سه فاز بر یکدیگر.
2-1-1- ساختار بتن
2-1-2- ساختار فاز سنگدانه
در واقع سنگدانه تعیین کننده وزن واحد حجم، مدول (الاستیسیته) و پایداری ابعادی بتن می باشد. این خواص بتن تا حدود زیادی بستگی به وزن مخصوص ظاهری و مقاومت سنگدانه ها دارد آن هم به نوبه خود به خواص فیزیکی سنگدانه بیشتر از خواص شیمیایی آن وابسته است. [2].
علاوه به تخلخل، شکل و بافت سنگدانه های درشت نیز در خواص بتن تاثیر دارند .
وجود سنگدانه های با ابعاد بزرگتر و همچنین نسبت زیادی سنگدانه های مسطح و طویل در بتن باعث به وجود آوردن لایه نازک آب در فصل مشترک خمیر و سنگدانه شده و این لایه در ضعیف نمودن پیوستگی خمیر و سنگدانه (در ناحیه انتقال) بسیار موثر است [3].
2-1-3- ساختار سیمان خمیر هیدراته
سیمان پرتلند غیرهیدراته پودر خاکستری رنگی است که از ذرات زاویه داری و در اندازه های بین 1 تا 50 میکرون تشکیل شده است. المانهای اصلی تشکیل دهنده سیمان عبارتند از: کلسیم، سیلیسیوم، آلومینیوم، آهن، منیزیم، سدیم، پتاسیم و گوگرد. این المانها در طبیعت خالص نیستند و به صورت اکسید وجود دارند. سیمان از آسیاب نمودن کلینکر با مقدار کمی سولفات کلسیم به دست می آید. ترکیبات اصلی کلینکر سیمان شامل C3S، C2S، C3A،C4AF است که در دمای 14700 درجه سانتی گراد با ذوب شدن و ترکیب شدن این اکسید ها حاصل می شوند.
هر یک از خواص سیمان تحت تاثیر یکی از اکسیدهای مرکب است، اکسیدهای C3S، C2S حدود 75 درصد سیمان را تشکیل می دهند و ویژگی های مفید سیمان از قبیل چسبندگی مقاومت و ثبات حجمی را این دو اکسید می سازند.
واکنش سیمان با آب را هیدراتاسیون (آبگیری) می گویند. آبگیری C3S خیلی سریع است ولی آبگیری C2S کند می باشد. در نتیجه C3S باعث ایجاد مقاومت کوتاه مدت و C2S باعث ایجاد مقاومت بلند مدت می شود. حرارت ایجاد شده در زمان آبگیری ناشی از واکنش سریع C3S با آب است. C3A اکسید ناپایداری است که شدیدا تحت تاثیر حملات شیمیایی به خصوص حمله سولفات ها قرار می گیرد. از واکنش C3A با سولفاتها ترکیبی به نام اترنژیت حاصل می شود که در مجاورت آب افزایش حجم می دهد و به این ترتیب باعث ترک خوردن و خرد شدن بتن می گردد. C3A در مقاومت سیمان نقش کمی دارد در عوض باعث گیرش آنی سیمان می شود. گیرش آنی به دلیل واکنش سریع C3A با آب رخ می دهد. واکنش C3A خالص با آب بسیار شدید است و به سفت شدن فوری خمیر که به گیرش آنی معروف است منتهی می گردد. برای جلوگیری از این امر در هنگام تولید سیمان سنگ گچ (H2O2، CaSO4) به کلینکر سیمان افزوده می شود. گیرش آنی برگشت ناپذیر است. C4AF در تولید سیمان به شکل کاتالیزور حرارتی عمل می کند. اگر مقدار C4AF در سیمان کم شود حرارت لازم برای تولید کلینکر سیمان افزایش می یابد و باعث غیراقتصادی شدن تولید سیمان می گردد.
هنگامی که پودر سیمان در آب ریخته می شود سولفات کلسیم و ترکیبات دمای بالای کلسیم تمایل به حل شدن پید کرده و مایع جدید سریعا از ذرات یونی مختلف اشباع می شود. در نتیجه تشکیل ترکیبات حاصل از کلسیم سولفات، آلومینات و یون های هیدروکسیل چند دقیقه پس از هیدراتاسیون سیمان ابتدا بلورهای سوزنی شکل سولفوآلومینات کلسیم هیدراته شده، موسوم به اترینگات ظاهر می گردند. پس از چند ساعت بلورهای بزرگ منشوری شکل هیدروکسید کلسیم و بلورهای کوچک الیافی شکل سیلیکات کسلیم هیدراته شده، فضاهای خالی خمیر را که قبلا توسط آب و ذرات سیمان اشغال شده بود پر می کنند. بعد از چند روز بسته به میزان نسبت اکسید آلومینیوم به سولفات سیمان پرتلند، اترینگیات ناپایدار شده و به مونوسولفات هیدراته شده به شکل صفحات شش وجهی در می آید. صفحات شش وجهی شکل همچنان متعلق به هیدروکسید کلسیم هیدراته شده می باشد که در خمیر هیدراته شده کم سولفات یا در سیمان های با C3A زیاد تشکیل می شود [4].
2-1-4- مواد جامد در خمیر هیدراته شده
1- هیدروکسید کلسیم
2- سولفوآلومینات کلسیم
3- دانه های کلینکر هیدراته نشده
4- سیلیکات کلسیم هیدراته
فاز سیلیکات کلسیم هیدراته که مختصرا با C–S–H نشان داده می شود، حدود 50 تا 60 درصد حجم مواد جامد خمیر سیمان کاملا هیدراته شده را تشکیل داده و بنابراین مهمترین بخش مواد جامد خمیر در تعیین خواص آن می باشد. علت نشان دادن این ترکیب به شکل C–S–H این است که نسبت به ترکیبات آن کاملا مشخص نشده و در آن نسبت C به S بین 5/1 تا 2 و نیز آب شیمیایی آن بسیار متغیر است. شکل ذرات C–S–H نیز از کریستال های ضعیف الیافی شکل تا شبکه های منسجم تغییر می کند. به علت شکل کلوییدی و تمایل به خوشه ای شدن آن بلورهای C–S–H تنها با دستگاه میکروسکوپ الکترونی قابل شناسایی دقیق است. ساختار بلورین داخلی C–S–H نیز هنوز معلوم نشده است. قبلا تصور می شد که بلورهای آن شبیه ماده معدنی طبیعی توبرمورایت است و از این رو گاه به C–S–H ژل توبرمورایتی نیز گفته می شد. [5]. با بهره گرفتن از دستگاه های مختلف اندازه گیری مساحت سطح C–S–H در حدود 100 تا 700 متر مربع بر گرم پیشنهاد شده است. مقاومت ماده اساسا به نیروهای واندروالس، اندازه حرفات ژلی یا فاصله بین قسمت جامد که در حدود 18 آنگستروم است نسبت دا
فرم در حال بارگذاری ...
[سه شنبه 1399-10-02] [ 11:52:00 ق.ظ ]
|