کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



آخرین مطالب


جستجو


 



تکه هایی از متن به عنوان نمونه :
چکیده
 
بکارگیری روش­های عددی بدون شبکه
در مدلسازی امواج غیرخطی سطح آب ناشی از باد
 
به کوشش
سیده فهیمه میرلوحی جوابادی
 
در این تحقیق معادلات دیفرانسیل موج غیرخطی توسط روش عددی RBF-DQ محلی حل شده ­اند. این معادلات دیفرانسیل که بصورت معادله­ لاپلاس (بعنوان معادله­ حاکمه) و شرایط مرزی غیرخطی در سطح آزاد می­باشند؛ اساس مدل ریاضی در این پژوهش­اند. با بهره گرفتن از این مدل ریاضی می­توان انتشار و تغییرات سطح آب را پس از تولید موج به خوبی شبیه سازی نمود. روش عددی RBF-DQ یک روش عددی بدون شبکه­ نوین است؛ که تا به حال جهت حل مسائلی نظیر معادلات نویراستوکس، مدل­سازی مسئله­ انتقال حرارت، شبیه­سازی نشت غیرماندگار و … بکار گرفته شده و نتایج قابل قبولی بدست داده است. در این روش علاوه بر بهره­بردن از ویژگی­های روش دیفرانسیل کوادرچر در تخمین مستقیم مشتق، با بکارگیری توابع پایه­ شعاعی، از مزایای روش­های عددی بدون شبکه نیز می­توان بهره­برد. ضمن آنکه می­توان روش حاصل را در مسائل با مرز نامنظم نیز بکارگرفت. یکی از مهمترین عوامل موثر بر دقت این روش، پارامتر شکل تابع پایه­ شعاعی است که در این پژوهش، مقادیر مناسب آن بااستفاده از آنالیز عدد وضعیت ماتریس ضرایب وزن تخمین زده می­ شود. در تحقیق حاضر بجای فرم کلی، از فرم محلی روش RBF-DQ استفاده گردیده است. این روش می ­تواند با حفظ دقت روش RBF-DQ، محدوده کاربرد آن را گسترش داده و هزینه­ های محاسباتی را كمتر نماید. به منظور شبیه­سازی سطح آزاد که بخش اصلی شبیه­سازی می­باشد؛ از روش مرکب اویلری و لاگرانژی استفاده ­شده­است. تصدیق صحت و دقت مدل حاضر توسط مدل­های تحلیلی، مدل­های عددی در دسترس و نتایج آزمایشگاهی بررسی شده است. در این پژوهش ابتدا مدل انتشار امواج در مخزن عددی بررسی می­گردد و سپس انتشار امواج حاصل از موج­ساز مطالعه می­ شود. نتایج این تحقیق نشان داد كه در مسئله­ای با شرط مرزی متغیر، از نظر حجم محاسبات، بکارگیری یک روش بدون شبکه نسبت به روش­های متکی بر شبکه اولویت دارد. روش RBF-DQ محلی به خوبی قادر به حل معادلات بوده و در برخی موارد دقت آن از روش­های تحلیلی و عددی دیگر بهتر است. همچنین بررسی عوامل موثر بر غیرخطی شدن موج نشان داد که ارتفاع موج نسبت به عمق آب و طول موج اثرگذارتر است.
 
کلیدواژگان: مدل موج غیر خطی- روش های عددی بدون شبکه
 
 
فهرست مطالب
 
 
عنوان                                         صفحه
 
فصل اول: مقدمه
1-1- کلیات.. 2
1-2- معرفی تحقیق حاضر.. 2
 
فصل دوم: بر پژوهش های پیشین
2-1- مقدمه.. 10
2-2- پیشینه ی تحقیقات انجام شده بر روی موج.. 11
2-2-1- مدل های اوّلیه ی امواج غیرخطی.. 11
2-2-2- مدل های جدید امواج غیرخطی.. 13
2-2-3- روش های عددی بدون شبکه در مدلسازی امواج غیرخطی   15
2-3- پیشینه ی تحقیقات انجام شده بر روی روش عددی مورد استفاده   16
2-3-1- روش عددی دیفرانسل کوادرچر (DQ).. 16
2-3-2- توابع پایه ی شعاعی (RBF).. 20
2-3-2-1- انواع توابع پایه ی شعاعی.. 20
2-3-2-2- کاربرد توابع پایه ی شعاعی در درونیابی   21
2-3-2-3- کاربرد توابع پایه ی شعاعی در حل معادلات دیفرانسیل   22
2-3-2-4- روش عددی RBF-DQ.. 23
2-3-2-5- تابع شعاعی MQ.. 24
 
عنوان                                         صفحه
 
2-3-3- عوامل موثر بر دقت و خطای مدل.. 25
2-3-3-1- چگالی گره ها.. 26
2-3-3-2- پارامتر شکل.. 26
2-3-3-2-1- تاثیر پارامتر شکل بر خطا.. 26
2-3-3-2-2- پارامتر شکل بهینه.. 29
2-3-3-3- پدیده ی رانچ.. 32
2-3-3-4- دقت محاسبات، خطای گرد کردن و عدد وضعیت   33
2-4- جمع بندی و نتیجه گیری.. 33
 

3-1- مقدمه.. 36
3-2- تئوری های موج.. 36
3-2-1- تئوری موج خطی.. 36
3-2-2- تئوری موج غیرخطی.. 39
3-2-2-1- دسته بندی تئوریهای اولیهی امواج غیرخطی   39
3-2-2-1-1- تئوری استوکس.. 39
3-2-2-1-2- تئوری Cnoidal 41
3-2-2-1-3- تئوری Boussinesq. 42
3-2-2- شبیه سازی عددی انتشار موج غیرخطی.. 42
3-2-2-1- هندسه ی مسئله و تعریف مخزن عددی.. 42
3-2-2-2- معادله ی حاکمه و شرایط مرزی.. 44
3-2-2-2-1- تئوری موج ساز.. 44
3-2-2-2-2- تابع صعودی.. 46
3-2-2-3- روش مرکب اویلری و لاگرانژی (MEL).. 48
عنوان                                         صفحه
 
3-2-2-4- ناحیه ی استهلاک یا ساحل مصنوعی.. 49
3-2-2-5- بکارگیری روش RBF-DQ برای تخمین مشتقات مکانی   50

پایان نامه و مقاله

 

3-2-2-5-1- انتخاب تابع پایه.. 50
3-2-2-5-2- تخمین مشتق های مکانی با روش RBF-DQ.. 51
3-2-2-5-3- روش RBF-DQ محلی.. 52
3-2-2-5-4- چگونگی اعمال شرایط مرزی.. 53
3-2-2-5-6- انتخاب پارامتر شکل مناسب.. 53
3-2-2-6- انتگرال گیری بر روی زمان.. 54
3-2-2-7- تابع یکنواختکننده.. 56
 
فصل چهارم:
4-1- مقدمه.. 58
4-2- مثال های عددی.. 59
4-2-1- مثال عددی اول: معادله ی برگرز.. 59
4-2-1-1- بررسی عوامل موثر بر افزایش دقت روش.. 60
4-2-1-1-1- بررسی تاثیر فاصله ی گرهها بر مدل   61
4-2-1-1-2- بررسی تاثیر پارامتر شکل بر مدل.. 61
4-2-1-1-3- بررسی تاثیر پارامتر شکل و فاصله ی گره ها بصورت همزمان.. 64
4-2-1-1-4- دقت محاسبات.. 65
4-2-1-1-5- پدیدهی رانچ.. 66
4-2-1-2- مقایسه ی روش های RBF-DQ و DQ.. 67
4-2-1-3- حل مسئله با بهره گرفتن از مقدار پارامتر شکل بهینه   68
4-2-2- مثال عددی دوم: معادله ی هلمهلتز.. 69
4-2-2-1- بررسی عوامل موثر بر افزایش دقت روش.. 70
عنوان                                         صفحه
 
4-2-2-1-1- بررسی تاثیر پارامتر شکل و تعداد گره ها بصورت همزمان.. 70
4-2-2-1-2- پدیدهی رانچ.. 71
4-2-2-2- حل مسئله با بهره گرفتن از مقدار پارامتر شکل بهینه   72
4-3- شبیه سازی انتشار موج در مخزن عددی.. 73
4-3-1- انتشار موج خطی.. 73
4-3-1-1- بررسی تاثیر همزمان تعداد گره ها و پارامتر شکل   75
4-3-1-1-1- تاثیر پارامتر شکل و تعداد گره ها در راستای افقی.. 78
4-3-1-1-2- تاثیر پارامتر شکل و تعداد گرهها در راستای عمق   80
4-3-1-1-3- بررسی تاثیر همزمان تعداد گره ها در دامنه ی تاثیر
و پارامتر شکل.. 83
4-3-1-2- حل مسئله با بهره گرفتن از پارامتر شکل مناسب و مقایسه ی
نتایج با نتایج روش تحلیلی.. 85
4-3-1-3- تاثیر طول ناحیهی استهلاک.. 88
4-3-1-4- مقایسه ی نتایج با نتایج روش عددی RBF  88
4-3-2- شبیه سازی انتشار موج غیرخطی در مخزن عددی   89
4-3-2-1- بررسی تاثیر همزمان تعداد گرهها و پارامتر شکل   91
4-3-2-1-1- تاثیر پارامتر شکل و تعداد گرهها در راستای افقی   91
4-3-2-1-2- تاثیر پارامتر شکل و تعداد گره ها در راستای عمق   94
4-3-2-1-3- بررسی تاثیر همزمان تعداد گره ها در دامنه ی
تاثیر و پارامتر شکل.. 96
4-3-2-2- حل مسئله با بهره گرفتن از پارامتر شکل مناسب و مقایسه ی
نتایج با نتایج روش تحلیلی.. 99
4-3-2-3- مقایسه ی نتایج با نتایج روش عددی RBF. 102
4-4- انتشار موج ایجاد شده توسط موج ساز در مخزن آزمایشگاهی   102
عنوان                                         صفحه
 
4-4-1- بررسی عوامل موثر بر غیرخطی شدن موج.. 105
 
فصل پنجم:
5-1- مقدمه.. 109
5-2- جمع بندی و نتیجه گیری.. 109
5-3- پیشنهادات.. 110
 
.. 111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست جداول
 
 
عنوان                                         صفحه
 
جدول2- 1- انواع توابع شعاعی پرکاربرد.. 20
جدول4- 1-تخمین پارامتر شکل بهینه با بهره گرفتن از کمینه ی نرمال خطای نسبی.. 62
جدول4- 2-تخمین پارامترشکل بهینه با بهره گرفتن از کمینه کردن نرمال خطای نسبی.. 64
جدول4- 3-مقایسه ی خطای RMSE دو روش دیفرانسیل کوادرچر و RBF-DQ
برحسب تعداد گره و در زمان های مختلف.. 67
جدول4- 4-مقایسه ی مقادیر خطای تابع برحسب تعداد گره های مختلف
در راستای افقی و بازای پارامتر شکل مناسب.. 71
جدول4- 5-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 79
جدول4- 6-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف
در راستای افقی و بازای پارامتر شکل مناسب.. 80
جدول4- 7-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در راستای افقی بازای c=1. 80
جدول4- 8-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب هر حالت   81
جدول4- 9-مقایسه ی مقادیر خطای تابع تراز سطح آب برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب هر حالت   82
جدول4- 10-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در دامنه ی تاثیر و بازای پارامتر شکل مناسب هر حالت   84
عنوان                                         صفحه
 
جدول4- 11-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های
مختلف در دامنه ی تاثیر و بازای پارامتر شکل مناسب هر حالت   85
جدول4- 12-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در دامنه ی تاثیر بازای c=1. 85
جدول4- 13-مقایسه ی تعداد کل گره ها و فاصله ی گام های زمانی مدل RBF-DQ
و RBF. 89
جدول4- 14-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 92
جدول4- 15مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف در راستای افقی و بازای پارامتر شکل مناسب.. 93
جدول4- 16-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در راستای افقی بازای c=1. 93
جدول4- 17-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره های
مختلف در راستای عمق و بازای پارامتر شکل مناسب.. 95
جدول4- 18-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره های مختلف در راستای عمق و بازای پارامتر شکل مناسب.. 96
جدول4- 19-مقایسه ی مقادیر خطای تابع پتانسیل سرعت برحسب تعداد گره ها
در دامنه ی تاثیر و بازای پارامتر شکل مناسب.. 97
جدول4- 20-مقایسه ی مقادیر خطای تراز سطح آب برحسب تعداد گره ها در
دامنه ی تاثیر و بازای پارامتر شکل مناسب.. 98
جدول4- 21-مقایسه ی خطای RMSE دو تابع پتانسیل سرعت و تراز سطح
برحسب مقادیر مختلف گره در دامنه ی تاثیر بازای c=1. 99
جدول4- 22-مقایسه ی تعداد کل گره ها و فاصله ی گام های زمانی
مدل RBF-DQ و RBF. 101
 
 
 
فهرست شکل
 
 
عنوان                                         صفحه
 
شکل1- 1-تصاویری از تاثیر امواج بر پیرامون.. 4
شکل1- 2-طبقه بندی امواج.. 5
شکل 1- 3-پدیده ی جداسازی امواج ((Reeve. 6
شکل2- 1-محدوده مناسب برای بکارگیری تئوری های موج.. 13
شکل2- 2-پهن شدن تابع پایه ی شعاعی MQ با تغییر پارامتر شکل
(نرمال شده به مقدار بیشینه ی 1).. 27
شکل3- 1-موج خطی سینوسی و پارامترهای آن.. 37
شکل3- 2- هندسه ی مسئله، دامنه و مرزها در پلان xz. 43
شکل3- 3-طرح شماتیک گره مرجع و دامنهی تاثیر آن.. 52
شکل4- 1-مرتبه ی همگرایی خطا نسبت به فاصله ی گرهها   61
شکل4- 2-نرخ همگرایی خطا برحسب پارامتر شکل.. 62
شکل4- 3-نرخ همگرایی خطا برحسب مقادیر پارامتر شکل کوچک   63
شکل4- 4-نرخ همگرایی خطا برحسب پارامتر شکل.. 63
شکل4- 5-نرخ همگرایی خطا برحسب مقادیر پارامتر شکل کوچک   64
شکل4- 6-مقادیر خطای میانگین بازای مقادیر مختلف فاصله ی گره ها برحسب
پارامتر شکل بدون بعد.. 65
شکل4- 7-مقایسه ی خطای حاصل از دو روش محاسبات مضاعف و اختیاری برحسب پارامتر شکل (ε نرمال خطای نسبی است.).. 66
عنوان                                         صفحه
 
شکل4- 8-توزیع خطا در راستای x واثر پدیده ی رانچ بر آن   66
شکل4- 9-مقایسه ی مقادیر تابع u برحسب x با روش های تحلیلی و RBF-DQ
در زمان T=0.1s. 68
شکل4- 10-مقایسه ی مقادیر تابع u برحسب x با روش های تحلیلی و RBF-DQ
در زمان T=1s. 68
شکل4- 11-بررسی تغییرات عدد وضعیت ماتریس ضرایب بازای مقادیر   70
مختلف پارامتر شکل و تعداد گره ها.. 70
شکل4- 12-مقادیر خطای میانگین بازای مقادیر مختلف فاصله ی گره ها برحسب پارامتر شکل بدون بعد.. 71
شکل4- 13-توزیع خطا در راستای x واثر پدیده ی رانچ بر آن برای   72
دو مقدار مختلف از پارامتر شکل.. 72
شکل4- 14-مقایسه ی نتایج مدل عددی RBF-DQ با روش المان محدود   73
شکل4- 15-طرح شماتیک آرایش گرهها در مخزن عددی.. 76
شکل4- 16-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در راستای افقی.. 77
شکل4- 17-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در راستای عمق.. 77
شکل4- 18-بررسی عدد وضعیت ماتریس بازای مقادیر مختلف   77
پارامتر شکل و گره ها در زیر دامنه ها.. 77
شکل4- 19-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل
و بازای مقادیر مختلف تعداد گره ها در راستای افقی   78
شکل4- 20-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای افقی.. 79
 
عنوان                                         صفحه
 
شکل4- 21-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 81
شکل4- 22-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در راستای عمق.. 82
شکل4- 23-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در دامنه ی تاثیر.. 83
شکل4- 24-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در دامنه ی تاثیر.. 84
شکل4- 25-تراز سطح آب برحسب مکان در زمان t=25 ثانیه   86
شکل4- 26-موقعیت گره ها در زمان t=25 ثانیه.. 86
شکل4- 27-تراز سطح آب بر حسب زمان در وسط مخزن.. 87
شکل4- 28-انتشار امواج در مخزن در چهار زمان متفاوت   87
شکل4- 29-تاثیر طول ناحیه ی استهلاک بر تراز سطح آب.. 88
شکل4- 30-مقایسه ی نتیایج روش RBF-DQ با روش RBF در زمان t=20 ثانیه   89
شکل4- 31-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل
و بازای مقادیر مختلف تعداد گره ها در راستای افقی   92
شکل4- 32-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در راستای افقی.. 93
شکل4- 33-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 94
شکل4- 34-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در راستای عمق.. 95
شکل4- 35-خطای RMSE تابع پتانسیل سرعت برحسب پارامتر شکل و بازای
مقادیر مختلف تعداد گره ها در دامنه ی تاثیر.. 97
عنوان                                         صفحه
 
شکل4- 36-خطای RMSE تراز سطح آب برحسب پارامتر شکل و بازای مقادیر
مختلف تعداد گره ها در دامنه ی تاثیر.. 98
شکل4- 37-تراز سطح آب برحسب مکان در زمان t=25 ثانیه   99
شکل4- 38-موقعیت گره ها در زمان t=25 ثانیه.. 100
شکل4- 39-تراز سطح آب بر حسب زمان در وسط مخزن(x=15 متر)   100
شکل4- 40-انتشار امواج در مخزن در چهار زمان متفاوت   101
شکل4- 41-مقایسه ی نتیایج روش RBF-DQ با روش RBF در زمان t=20 ثانیه   102
شکل4- 42-هندسه ی موج ساز شناور گوه ای.. 103
شکل4- 43-تراز سطح آزاد بر حسب زمان در مکان x/a=9.629. 104
شکل4- 44-تراز سطح آزاد بر حسب زمان در مکان x/a=9.629. 104
شکل4- 45-موقعیت گره ها در زمان t=15.7 ثانیه.. 105
شکل4- 46-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/h  106
شکل4- 47-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/L   106
شکل4- 48-خطای میان مدل خطی با مدل غیرخطی بازای مقادیر مختلف H/L   107
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 
 
 
 
 
مقدمه
 
 
1-1- کلیات
 
اقیانوسها و دریاها سرمایه های عظیم جهان هستی بشمار می­آیند و اثرات مهمی بر معیشت مردم، اقتصاد، توریسم و حمل و نقل می­گذارند. دراین محیط های آبی بیکران،
پدیده­های گوناگونی روی می­دهد؛ یکی از آشکارترین این پدیده ­ها که پیوندی ناگسستنی با دریاها و اقیانوسها دارد؛ امواج ناشی از باد است. ­شناخت و پیش­ بینی این امواج برای بهره‌برداری صحیح و ایمن از اقیانوس­ها و دریاها امری ضروری است. در تحقیق حاضر این امواج مورد بررسی قرارگرفته­اند و مدلی ریاضی برای شبیه­سازی آنها ارائه­شده­است.
 
 
1-2- معرفی تحقیق حاضر
 
بیش از 75% از کره­ی زمین از آب پوشیده­شده­است. این موضوع خود بیانگر اهمیت شناخت و بررسی پدیده­هایی است که در این بخش وسیع از کره­ی زمین رخ می­دهند. امواج از مهمترین پدیده­های موجود در محیط­های آبی بشمار می­آیند. بنابراین پیش بینی و شبیه­سازی آنها نقش بسزایی در بخدمت گرفتن و کنترل دریاها و اقیانوس­ها دارد. بطور مثال، ساخت سازه­های ساحلی برای ایمنی ساحل و کنترل حریم دریا، طراحی سازه­های فرا ساحلی به منظور بهره ­برداری از نفت و گاز، مطالعات زیست محیطی، طراحی کشتی­ها و حمل و نقل ایمن آنها و انتقال رسوب همگی نیازمند اطلاعاتی دقیق و کامل از امواج آب هستند.

الف) (

(ب)
(ج)
شکل1- 1-تصاویری از تاثیر امواج بر پیرامون
 
دستیابی به اطلاعات امواج و ویژگی­های آنها به­ دو روش­ امکان­ پذیر است. روش نخست، تخمین امواج بوسیله­ ابزارهای اندازه‌گیری، نظیر شناورهای اندازه‌گیری موج[1] یا ماهواره­ها است. و روش دوم مدلسازی امواج است که می ­تواند توسط مدل­های ریاضی یا فیزیکی
انجام­پذیرد. ازآنجایی‌ که اندازه‌گیری­هایی که توسط شناورهای اندازه‌گیری موج انجام می­شوند؛ نقطه­ای هستند و تصاویر ماهواره­ای نیز از دقت کافی‌ برخوردار نیستند؛ شبیه­سازی توسط مدل­های ریاضی و فیزیکی اهمیت فراوانی دارد. از سوی دیگر تهیه­ مدل­های فیزیکی مشکل، و مستلزم صرف زمان و هزینه­ زیادی می­باشد؛ ازاینروست که با پیشرفت­ کامپیوترها مدل­های ریاضی جایگاه مهمی در شبیه­سازی­ها و مدلسازی­های مسائل مهندسی پیدا کرده ­اند. در سالهای اخیر مدل­های عددی برای شبیه­سازی امواج نیز مورد استفاده قرارگرفته­اند.
امواج تحت اثر عوامل گوناگون ایجاد می­شوند. باد، اغتشاشات بستر دریا و نیروی گرانش خورشید و ماه سه عامل اصلی تولید موج­اند. امواج ناشی از باد کوتاه­اند و پریود کوچکتری دارند. درمقابل امواج ناشی از اغتشاشات بستر (سونامی) و امواج ناشی از گرانش (جزرومدی) قرار دارند که در گروه امواج بلند جای می­گیرند. طبقه ­بندی امواج و انرژی نظیر هرنوع براساس پریود در شکل (1-2) نشان داده­شده­است.
 
شکل1- 2-طبقه بندی امواج (Reeve و همکاران، 2004)
 
در این پژوهش به بررسی امواج کوتاه ناشی از باد پرداخته­شده­است. پس از ایجاد امواج توسط باد، حرکت آنها آغاز می­ شود. در مدت زمان حرکت، امواج از یکدیگر جدا شده و ارتفاعشان کاهش می­یابد اما طول موج و پریودشان حفظ می­ شود. به این فرایند جداسازی امواج گفته می­ شود. امواجی که در ناحیه­ی تولید قرار دارند، نامنظم، کوتاه و تیز[2] اند (Reeve و همکاران، 2004) اما با دور شدن از این ناحیه فرم تقریبا منظم و کوتاه پیدا می­ کنند و در نهایت به امواج دورا تبدیل می­شوند (شکل (1-3)).
شکل 1- 3-پدیده ی جداسازی امواج (Dispersion) (Reeve و همکاران، 2004)
 
در مدلسازی­ امواج کوتاه ناشی از باد، معادلات و قواعد حاکم، می­توانند بسته به شرایط و کاربرد مدل، خطی و یا غیرخطی درنظرگرفته­شوند. بطور مثال فرایند شکست موج در آبهای عمیق (کلاهک سفید[3]) بصورت محلی شدیدا غیرخطی است. اما بطور متوسط استهلاک انرژی نظیر با آن در مقیاس بزرگ ضعیف است. مثال دیگر سازه­های در معرض امواج هستند. مثلا در اندازه ­گیری نیروهای وارد بر یک سازه­ی دریایی، در مواردی می­بایست امواج را غیرخطی مدل کرد. بطورکلی برای مدلسازی امواج خیلی تیز یا امواج در آبهای کم عمق یا در
مقیاس­های کوچک، مدل­های خطی پاسخگو نیستند و می­بایست از مدل­های غیرخطی استفاده کرد (Holthuijsen، 2007). هدف از این تحقیق بررسی و شبیه­سازی امواج غیرخطی است.
تاکنون محققین پژوهش­های بسیاری در زمینه­ مدلسازی امواج غیرخطی ناشی از باد انجام داده­اند تئوری­های اولیه، تئوری­های تحلیلی هستند. اما تئوری­های جدید برمبنای معادلات دیفرانسیل جزئی[4] می­باشند و حل آنها با روش­های عددی میسر است (Holthuijsen، 2007)). روش­های المان محدود[5] و تفاضل محدود[6] روش­هایی هستند که در این زمینه مورد استفاده قرارگرفته­اند. بعنوان مثال Mei (1978) از روش المان محدود و Chan و Street (1970) از تفاضل محدود استفاده کردند. یکی از پرکاربردترین روش­ها در حل معادلات غیرخطی موج، روش المان مرزی[7] است که توسط محققین زیادی مانند Cokelet و Longuet-Higgings (1976) بکارگرفته­شده­است. روش­های ذکر شده نیازمند شبکه­بندی دامنه­ محاسباتی هستند. این شبکه­بندی باید مطابق با معیارهای خاص انجام گیرد. چراکه شکل و نحوه­ اتصال المان­ها که کیفیت شبکه را کنترل می­نمایند؛ دقت نتایج را مستقیما تحت تاثیر قرار می­دهند. ضمن اینكه در بیشتر مسائل به دلیل انحراف المان­ها میبایست شبكه­بندی در همه­ی گام­های زمانی و یا برخی از آنها مجدداً انجام شود و این شبكه­بندی­هاخود به­اندازه­ شبكه­ی اولیه هزینه­بر و زمانبر هستند. به همین دلیل روش های عددی بدون شبكه[8] در مدلسازی امواج غیرخطی نیز مانند سایر زمینه ­های مهندسی مورد توجه قرارگرفتند. یکی از روش­های عددی بدون شبکه­ ای که در سال­های اخیر مورد استفاده محققین قرارگرفته، روش RBF-DQ است. که در آن برای تخمین مشتق از روش DQ بهره­گرفته می­ شود. به­کمک روش متکی بر شبکه­ی[9]­ DQ می­توان باوجود گره­های اندک در دامنه به نتایج خوبی دست­یافت. ولی نمی­توان این متد را در دامنه­های نامنظم بکارگرفت (Hashemi و Hatam، 2011)؛ چراکه مشتق تابع بوسیله­ DQ در هر راستا بصورت مجموع خطی وزن­دار مقادیر تابع در همان راستا بیان می­ شود و در دامنه­های نامنظم امکان فراهم کردن گره­های منظم در یک راستای خاص مقدور نیست. اما با بهره گرفتن از توابع پایه­ شعاعی[10] بعنوان تابع شکل در DQ می­توان از این مشکل اجتناب کرد. ضمن آنکه بکارگیری توابع شعاعی در روش DQ آنرا به یک متد بدون شبکه تبدیل خواهد کرد که معایب ذکر شده روش­های متکی بر شبکه را ندارد.
از میان انواع مختلف توابع شعاعی، در این تحقیق بدلیل عملکرد خوب تابع MQ از این نوع تابع در حل مسائل استفاده­شده­است. این تابع دارای پارامتری بنام پارامتر شکل[11] است که دقت نتایج را تاحد زیادی تحت تاثیر قرار می­دهد. تاکنون پژوهش­های فراوانی برای محاسبه­ی مقدار بهینه­ این پارامتر ارائه ­شده ­اند. اما هیچ­یک روشی تئوری و جامع ارائه نداده­اند. بهمین دلیل تحقیقات در این زمینه همچنان ادامه دارد.
[1] Wave bouy
[2] Steep
[3] White capping
[4] Partial differential equations
[5] Finite element
[6] Finite difference

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-02] [ 07:27:00 ب.ظ ]




شهریور1392
تکه هایی از متن به عنوان نمونه :
چکیده
 
تدوین مدل تخصیص کمی وکیفی آب در حوضه‌های آبریز: کاربرد تئوری بازی‌ها
 
 
به کوشش
عاطفه پویا
 
عوامل متعددی مانند خصوصیات هیدرولوژیکی، اقتصادی و زیست‌محیطی بر نحوه تخصیص منابع آب در یک حوضه آبریز تأثیر می‌گذارند. در نظر گرفتن این عوامل در روند تخصیص منابع آب، لحاظ عدم‌قطعیت‌های موجود در عوامل مذکور و وجود ذینفعان متعدد در یک حوضه آبریز باعث می­ شود اعمال یک رویکرد جامع و پایدار در بهره ­برداری از منابع آبی حوضه آبریز، امری پیچیده و دشوار باشد. در این پایان‌نامه با توجه به اهمیت موضوع، ابتدا مدلی جهت تخصیص همزمان کمی وکیفی منابع آب در سیستم رودخانه-مخزن براساس سه معیار عدالت، بهره‌وری و پایداری تدوین گردیده و سپس جهت لحاظ عدم‌قطعیت­های موجود از روش بهینه‌سازی سناریوها استفاده شده است. در مرحله بعد با بهره گرفتن از تئوری بازی‌ها مدل همکارانه با هدف حداکثرسازی سود حاصل از تخصیص آب در سیستم تدوین شده و از رویکرد بازی همکارانه [1]FVLC جهت بازتوزیع سود حاصل از تخصیص همکارانه استفاده شده است.کارایی مدل پیشنهادی در حوضه آبریز رودخانه رودبال در استان فارس مورد ارزیابی قرار گرفته است.
واژگان کلیدی: تخصیص کمی و کیفی، تئوری بازی، بهینه‌سازی سناریوها، بازی همکارانه
 
 
 
فهرست مطالب
 
 

صفحه

عنوان                                                                                         
 
فصل اول: مقدمه
1-1- مقدمه…………………………….. 2
1-2- اهمیت مسئله……………………….. 3
1-3- هدف………………………………. 5
1-4- سؤالات اساسی تحقیق………………….. 6
1-5- فرض‌های ساده کننده تحقیق…………….. 6
1-6- نوآوری‌های تحقیق……………………. 6
1-7- ساختار پایان‌نامه…………………… 7
فصل دوم: مرور پیشینه مطالعات
2-1- مقدمه…………………………….. 9
2-2- پیشینه مطالعات در زمینه مدیریت منابع آب در حوضه آبریز 10
2-3- پیشینه مطالعات در زمینه به کارگیری تئوری بازی‌ها در مدیریت کمی و کیفی منابع آب…………………… 13
2-4- جمع‌بندی…………………………… 19
 
فصل سوم: ابزار کارهای مورد استفاده
3-1- مقدمه…………………………….. 22
3-2- شبیه‌سازی و بهینه‌سازی……………….. 23
3-2-1- نرم‌افزار GAMS…………………. 23
3-2-2- Solver MINOS…………………….. 24
3-2-3- شبیه‌سازی کیفی…………………. 24

صفحه

عنوان                                                                                         
 
3-3- تئوری بازی‌ها………………………. 24
3-3-1- تفاوت میان تصمیم گیری و بازی……. 25
3-3-2- برخی از عوامل تأثیرگذار بر نوع بازی 25
3-3-3- بازی همکارانه…………………. 26
3-3-3-1- هسته…………………….. 27
3-4- تحلیل سناریوها…………………….. 28
3-4-1- تعریف سناریو و سناریوسازی………. 29
3-4-2- روش‌های سناریوسازی……………… 30
3-4-3- ساختار عمومی مدل بهینه‌سازی با بهره گرفتن از سناریوها                                                31
3-5- شاخص SPI…………………………… 34
3-6- جمع‌بندی…………………………… 36
 
فصل چهارم: مطالعه موردی: سیستم آبی حوضه رودخانه رودبال
4-1- مقدمه…………………………….. 38
4-2- منابع آبی…………………………. 40
4-3- مشخصات سد رودبال به عنوان اصلی‌ترین منبع ذخیره آب سطحی در حوضه رودخانه رودبال…………………… 40
4-4- نیازهای آبی……………………….. 41
4-4-1- نیاز صنعت و معدن………………. 41
4-4-2- نیاز شرب……………………… 42
4-4-3- نیاز بخش کشاورزی………………. 42
4-4-3-1- نیاز شبکه آبیاری………….. 43
4-4-3-2- نیاز کشاورزان سنتی………… 43
4-5- خصوصیات اقتصادی بخش کشاورزی…………. 44
4-6- جمع‌بندی…………………………… 44
 
فصل پنجم: ساختار مدل پیشنهادی
5-1- مقدمه…………………………….. 51
5-2- ساختار مدل پیشنهادی………………… 51
5-3- تدوین مدل بهینه‌سازی تخصیص اولیه کمی وکیفی آب 54

صفحه

پایان نامه و مقاله

 

عنوان                                                                                         
 
5-3-1- عدالت………………………… 54
5-3-2- کارایی……………………….. 55
5-3-3- پایداری………………………. 55
5-3-4- مدل شبیه‌سازی کیفیت آب………….. 56
5-3-5- تدوین مدل قطعی تخصیص اولیه……… 57
5-4- تدوین مدل غیرقطعی برمبنای روش بهینه‌سازی سناریوها 60
5-5- تدوین مدل تخصیص کمی و کیفی همکارانه….. 62
5-6- بازتوزیع سود ائتلاف با بهره گرفتن از مدل‌ بازی همكارانه FVLC                                                63
5-6-1- بازی دو جانبه همكارانه FVLC…….. 63
5-6-2- نحوه تبدیل بازی چندجانبه به بازی دو جانبه   64
5-7- جمع‌بندی…………………………… 65
 
فصل ششم: نتایج مدل پیشنهادی
6-1- مقدمه…………………………….. 67
6-2- نتایج مدل تخصیص کمی و کیفی در حالت اولیه و همکارانه  67
6-3- صحت سنجی مدل………………………. 79
6-4- جمع‌بندی……………………………. 82
 
فصل هفتم: خلاصه، جمع‌بندی و پیشنهادات
خلاصه، جمع‌بندی و پیشنهادات……………….. 84
منابع…………………………………. 86
 
 
 
 
 
 
 
 
 
فهرست جدول‌ها

صفحه

 
عنوان                                                                                         
 
جدول 3-1- استاندارد وضعیت بارش براساس SPI…… 36
جدول 4-1- مقادیر سطح، حجم و ارتفاع مخزن سد رودبال  41
جدول 4-2- مقادیر تبخیر و بارش بر سطح مخزن سد.. 46
جدول 4-3- نیاز ماهانه و سالانه مصارف صنعتی از سد رودبال (میلیون مترمکعب)………………………………… 46
جدول 4-4- نیاز ماهانه و سالانه مصارف شرب از سد رودبال (میلیون مترمکعب)………………………………… 46
جدول 4-5- نیاز آبی ناخاص محصولات پیشنهادی (مترمکعب در هر هکتار)……………………………………….. 47
جدول 4-6- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال پرآبی- الگوی تیپ الف…………. 48
جدول 4-7- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال نرمال- الگوی تیپ ب…………… 48
جدول 4-8- الگوی کشت و سطح زیر کشت پیشنهادی برای ارضی آببران در سال­هال خشک- الگوی تیپ پ…………….. 49
جدول 4-9- عملکرد و قیمت محصولات کشاورزی در منطقه 49
جدول 6-1- شاخص SPI در منطقه………………… 68
جدول 6-2- مقدار آب تخصیص داده شده به آببران در حالت همکارانه و غیرهمکارانه(MCM)………………………….. 76
جدول 6-3- حد بالا و پایین سود بازتوزیع شده توسط FVLC 81
 
 
 
 
 
 
 
 
 
 
 
فهرست شکل‌ها
 

صفحه

 
عنوان                                                                                         
 
شکل 4-1- موقعیت قرارگیری منطقه مورد مطالعه…. 39
شکل 4-2- منحنی سطح – حجم – ارتفاع مخزن سد….. 45
شکل 4-3- شکل شماتیک آببران کشاورزی منطقه مورد مطالعه    42
شکل 5-1- ساختار مدل پیشنهادی………………. 52
شکل 6-1- عملکرد مخزن در سناریو ترسالی……… 70
شکل 6-2- عملکرد مخزن در سناریو نرمال………. 70
شکل 6-3- عملکرد مخزن در سناریو خشک………… 71
شکل 6-4- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببراول) 72
شکل 6-5- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببردوم) 72
شکل 6-6- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببرسوم) 73
شکل 6-7- نسبت مقدار آب تخصیص داده شده به نیاز آبی (آببرچهارم)……………………………………….. 73
شکل 6-8- تغییرات TDS در نقاط کنترل کیفی در حالت خشکسالی 74
شکل 6-9- مقایسه سود حاصل از تخصیص همکارانه وغیرهمکارانه در سناریو خشک…………………………………….. 75
شکل 6-10- مقایسه نسبت تأمین نیاز آببر سوم در حالت نرمال و حالتی که TDS در آورد رودخانه حداکثر است، در سناریو نرمال    80
شکل 6-11- مقایسه مقدار رها شده از مخزن در حالت نرمال و حالتی که آورد رودخانه %80 کاهش یافته است، در سناریو نرمال 80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

مقدمه

 
 

1-1- مقدمه

 
رشد جمعیت و شهرنشینی، افزایش تولیدات کشاورزی و تغییرات آب و هوا از یک سو وکمبود منابع آب شیرین در دسترس از سوی دیگر باعث شده است نحوه­ بهره ­برداری بهینه از منابع آب، بحثی چالش برانگیز باشد. در چند دهه اخیر نظر سیاستگزاران و تصمیم­ گیران بخش آب با توجه به افزایش رقابت بر سر آب در میان فعالیت­های مختلف انسانی و تأثیر آن بر محیط‌زیست و پرهیز از تصمیم­ گیری­ هایی در زمینه تخصیص آب که در آینده پاسخ­گویی به آن با مشکل مواجه شود، به سوی توسعه سیاست­های پایدار در تخصیص منابع آب، جلب شده است. به همین علت رویکرد برنامه‌ریزی مبتنی بر مدیریت عرضه[2] که با هدف بیشینه‌سازی عرضه آب برای تقاضاهای آبی عمل می‌کند، امروزه جای خود را به رویکردهایی داده است که عواملی مانند کیفیت آب، عدالت، سود اقتصادی و پایداری در سیستم را در نظر می­گیرد (Zheng et al., 2011). در نظر گرفتن این عوامل در روند تخصیص منابع آب، لحاظ عدم‌قطعیت‌های موجود در عوامل مذکور و وجود ذینفعان متعدد در یک حوضه آبریز باعث می‌شود اعمال یک رویکرد جامع و پایدار در بهره ­برداری از منابع آبی حوضه آبریز، امری پیچیده و دشوار باشد.
در این پایان نامه مدل کمی و کیفی جهت تخصیص آب در سیستم­های رودخانه-مخزن در قالب یک مدل بهینه‌سازی ریاضی فرمولبندی و پیشنهاد گردیده است. این مدل، امکان تصمیم‌گیری در مورد مقدار تخصیص آب به متقاضیان را با لحاظ اثرات بلندمدت خصوصیات هیدرولوژیکی، اقتصادی و زیست‌محیطی، در قالب سه معیار عدالت[3]، بهره­وری[4] و پایداری[5]، با در نظر گرفتن عدم‌قطعیت در پارامترهای هیدرولوژیکی و اقتصادی را برای دست‌اندرکاران بخش آب فراهم می­نماید.
در این مدل ابتدا با رویکرد تخصیص همزمان كمی و كیفی آب، براساس سه شاخص یاد شده تلاش شده است، ضمن تخصیص بهینه آب بین آببران، بار آلودگی وارد‌شده توسط آن‌ ها که متأثر از مقدار آب تخصیص داده شده است، به گونه­ ای باشد كه استانداردهای زیست‌محیطی نیز تأمین شود. سپس با رویکرد تئوری بازی‌ها، مدلی به منظور تخصیص كمی و كیفی منابع آب ارائه می‌گردد که بتواند ضمن توجه به مطلوبیت‌های طرف‌های درگیر و جلب رضایت آنها، سود حاصل در سیستم حداکثر شود. در مدل­های ارائه شده عدم‌قطعیت موجود در پارامترهای هیدرولوژیکی و اقتصادی به ترتیب با بهره گرفتن از روش بهینه­سازی سناریوها و مدل بازی FVLC[6] لحاظ شده ­اند. این مدل­های بهینه­سازی در محیط نرم­افزار [7]GAMS کدنویسی شده‌اند.
 
 

1-2- اهمیت مسئله

 
بشر تقریباً‌ یک درصد كل آب روی زمین را مورد بهره‌برداری قرار می‌دهد كه به صورت آب‌های سطحی (جویبارها، رودخانه‌ها و دریاچه‌ها) و یا آب‌های زیرزمینی (چشمه و چاه) است و همین مقدار اندک پراکنشی نا­متناسب دارد. با توجه به توزیع نامناسب زمانی و مکانی بارندگی و همچنین ناکافی بودن ریزش‌های جوی (متوسط بارندگی 250 میلی متر)، ایران در رده کشورهای خشک و نیمه خشک جهان دسته بندی می‌گردد. با چنین اقلیمی، ایران کشوری است که سهم کمتری از همین مقدار اندک منابع آب می‌برد. افزایش جمعیت (از 10 میلیون نفر در سال 1925 به 68 میلیون نفر در سال 2005)، توسعه بهداشت، کشاورزی و صنایع نیز افزایش تقاضای آب را در پی داشته است. این در حالی است که الگوهای مدیریتی و رفتاری ما در مصرف همین منابع ناچیز به گونه‌ای است که گویی مشکلی در این باره وجود ندارد؛ چنانچه در گزارش سال 2007 بانک جهانی، سرعت کاهش منابع آب شیرین در ایران 6 برابر میانگین جهانی عنوان شده است. منابع آب شیرین برای برآوردن نیازهای اولیه انسان، جنبه‌ای حیاتی دارد و حفاظت ناکافی از کیفیت و کمیت این منبع حیاتی منجر به پدید آمدن محدودیت‌های جدی در فرایند توسعه پایدار می‌شود و از این رو استفاده بهینه کمی و کیفی از منابع آب موجود امری اجتناب ناپذیر است. بهره‌برداری بهینه‌ از منابع آب به عنوان یکی از مسائل پایه در تحلیل سیستم‌های منابع آب در چند دهه گذشته مورد توجه محققین قرار داشته است که از عمده‌ترین دلایل آن می­توان به ارزش اقتصادی حاصل از بهره‌برداری بهینه از منابع آب، افزایش نیازهای آبی و کمبود منابع آب در دسترس اشاره کرد. از طرفی كیفیت آب نیز از پارامترهای مهمی است كه بسته به مورد استفاده، از طریق ارگان­های مختلف دارای محدودیت‌هایی است. بدین معنی كه برای مصارف مختلف استانداردهای مختلفی برای كیفیت آب تعیین گردیده است از اینرو كیفیت آب نیز از پارامترهای تعیین كننده در تعیین سیاست بهره‌برداری از منابع آب موجود است (مجرد، 1391).
باتوجه به نیاز کشاورزی بیش از 94 درصد از کل مصرف آب در بخش کشاورزی می­باشد. استان فارس یکی از مهمترین استانهای کشور در تولید محصولات کشاورزی می­باشد و با توسعه کشاورزی در این استان و با توجه به نیاز هرچه بیشتر به آب، توجه سیاستگزاران و تصمیم‌گیران بخش آب بیش از پیش به سمت نحوه مدیریت منابع آب این استان جلب شده است (مجرد، 1391).
منطقه داراب با دارا بودن پتانسیل بالقوه­ای که در زمینه کشاورزی دارد، از قدیم یکی از قطب‌های بزرگ کشاورزی و باغداری در استان فارس بوده است. رودخانه رودبال به عنوان اصلی­ترین منبع آب سطحی در این منطقه می­باشد. متأسفانه در سال­های اخیر با توجه به خشکسالی،­ آب رودخانه به شدت کاهش یافته و کشاورزان برای تأمین نیاز خود دست به حفر چاه­های عمیق و نیمه عمیق متعددی در دشت داراب زده­اند و با برداشت بیش از حد و غیر اصولی باعث شده ­اند امروز دشت داراب یکی از دشت­های ممنوعه ­باشد. سازمان آب جهت کنترل آب­های سطحی در این منطقه و بهبود شرایط، سد مخزنی رودبال را بر روی رودخانه رودبال احداث نموده است (مهندسین مشاور آب نیرو، 1390). حال با توجه به شرایط منطقه و اهمیت موضوع، تخصیص بهینه و کنترل شده منابع آب در سیستم مخزن-رودخانه رودبال امری ضروری است.
 
 

1-3- هدف

 
یكی از موارد مهم در بحث بهره‌برداری كمی وكیفی از منابع آب موجود،که تاکنون در بهره برداری بهینه کمی و کیفی از سیستم رودخانه-مخزن مورد توجه قرار نگرفته است، برداشت بهینه از سیستم رودخانه-مخزن براساس سه معیار عدالت، پایداری و بهره­وری می­باشد. به همین دلیل هدف اصلی در این پایان نامه ارائه مدلی بوده است که تخصیص بهینه از سیستم رودخانه-مخزن براساس سه معیار ذکر شده را با لحاظ عدم‌قطعیت­ها مشخص کند. در راستای رسیدن به این مقصود، براساس مطلوبیت­ها و محدودیت­های موجود مدلی جهت شبیه­سازی و بهینه­سازی تخصیص منابع آب در محیط برنامه­نویسی GAMS تهیه و سعی شده است مدل به گونه­ ای فرمولبندی شود که در جواب بهینه حاصل معیارهای یاد شده تا حد امکان رعایت شود. هدف دیگر در این پایان نامه ، ارائه الگوهای تخصیص عادلانه و كارای آب، به گونه­ ای که ضمن حفظ كیفیت آب و عدم تخطی از استاندارد کیفیت آب، منافع حاصله از تخصیص آب نیز حداكثر گردد. بدین منظور براساس تئوری بازی‌ها ابتدا ائتلاف­های ممکن بین آببران شکل گرفته و سپس مدلی ارائه گردیده است که علاوه­بر در نظر گرفتن سه معیار ذکر شده، تخصیص به هر یک از آببران را با هدف حداکثر سازی سود اقتصادی حاصل در ائتلاف انجام دهد. در نهایت از بازی همکارانه FVLC جهت بازتوزیع سود حاصل در ائتلاف­ها استفاده شد.
 
 
 

1-4- سؤالات اساسی تحقیق

 
در بخش قبل اهداف اصلی پایان نامه تشریح گردیدند. سؤالات اصلی که در قالب مطالعات انجام شده در این تحقیق پاسخ داده شده‌اند، به شرح زیر می‌باشند:
– آیا می‌توان بر پایه سیاست­های بهینه به دست آمده از مدل بهینه‌سازی تخصیص کمی وکیفی آب، قوانین تخصیص در زمان واقعی را تدوین کرد؟
– آیا درنظر گرفتن عدم‌قطعیت­ها در افزایش بهره­وری سیستم مؤثر است؟
– در مدیریت تخصیص کمی و کیفی آب در سیستم رودخانه-مخزن آیا تلفیق مدل‌های تخصیص کمی و کیفی آب می‌تواند در افزایش بهره‌وری سیستم مؤثر باشد و منجر به بهبود وضعیت كیفیت آب گردد؟
 
 

1-5- فرض­های ساده­کننده تحقیق

 
در این تحقیق فرض‌های زیر درنظر گرفته شده است:
– در منطقه مورد مطالعه فرض شده است امکان عدم تأمین نیاز شرب و صنعت در طی تمام زمان برنامه ­ریزی وجود ندارد. لذا تأمین نیاز این دو بخش به صورت صد در صد صورت پذیرفته است.
– روستاهای حقابه­بر، به منظور مدیریت تخصیص آب، گروه­بندی شده ­اند و در نهایت چهار آببر به عنوان آببر کشاورزی درنظر گرفته شده است.
– فرض گردیده است مخزن سد به صورت یک تانک با اختلاط کامل عمل می­ کند.
 
 

1-6- نوآوری­های تحقیق

 
نوآوری­های این تحقیق در زمینه مدلسازی تخصیص آب به صورت زیر قابل بیان است:
1- مدلسازی کمی و کیفی سیستم­های رودخانه-مخزن با لحاظ سه شاخص پایداری، عدالت و بهره­وری.
2- بازتوزیع منافع حاصل از تخصیص کمی و کیفی با تدوین مدل بازی همکارانه FVLC
3- به کارگیری شاخص SPI[8] جهت سناریوسازی در روند تحلیل سناریوها
4- تدوین مدل بهینه­سازی سناریویی تخصیص کمی وکیفی آب
 
 

1-7- ساختار پایان نامه

 
این پایان‌نامه در چهارچوب هفت فصل ارائه شده است. در فصل حاضر کلیات مرتبط با پایان‌نامه مورد بررسی قرار گرفته است. در فصل بعد بر کارهای پیشین و تحقیقات صورت گرفته در زمینه تخصیص کمی وکیفی آب و به کارگیری تئوری بازی‌ها در تخصیص منابع آب انجام گرفته است. نحوه عملکرد نرم‌افزارها و روش­های به کار گرفته شده در روند مدلسازی، در فصل سوم ارائه شده است. در این تحقیق مورد مطالعاتی جهت ارزیابی مدل ارائه شده، حوضه رودخانه رودبال می­باشد. مشخصات محدوده مذکور در فصل چهار مورد بررسی قرار گرفته است. ساختار مدل به کار گرفته شده و نتایج حاصل از کارگیری مدل در منطقه مورد مطالعه به ترتیب در فصل پنج و شش تشریح شده است. در نهایت در فصل هفتم نیز نتیجه ­گیری و پیشنهادات برای ادامه­ تحقیق ارائه شده است.
 
[1]Fuzzy Variable Least Core
[2] Supply Management
Equity

موضوعات: بدون موضوع  لینک ثابت
 [ 07:27:00 ب.ظ ]




 
 
 
 
 
 
فهرست مطالب
 
 
عنوان                                         صفحه
 
فصل اول: مقدمه
1-1- کلیات…………………………….. 2
1-2- انواع سرریز ………………………. 3
1-3- هدف تحقیق ………………………… 5
1-4- اهمیت تحقیق……………………….. 7
1-5- نو آوری…………………………… 8
1-6- گفتار های پایان نامه……………….. 8
 
فصل دوم: مروری بر تحقیقات گذشتگان
2-1-کلیات……………………………… 11
2-2- سازه های ریزشی…………………….. 11
2-2-1- مکانیزم برخورد درسازه های برخوردی… 14
2-3 -سازه های ریزشی گردابی………………. 19
2-3-1- سازه ورودی…………………….. 20
2-3-2- معادله دبی…………………….. 20
2-3-3- شفت ریزشی گردابی با تیغه های راهنما. 21
2-3-3-1- جریان در شفت………………… 22
 
فصل سوم: شفت دندانه ای
3-1- کلیات…………………………….. 28
3-2- ساختار سرریز شفت دندانه ای………….. 29
 
عنوان                                         صفحه
 
فصل چهارم: ساختار آزمایشی تحقیق
4-1- کلیات…………………………….. 31
4-2- سیمای مجموعه آزمایشگاهی…………….. 32
4-3- تجهیزات اندازه گیری………………… 36
4-3-1 فلومتر الکترو مغناطیسی فلنجی مگاب 3000    36
4-3-2- دور سنج لیزری………………….. 37
4-3-3- چرخ آبی مدور…………………… 37
4-3-4- پیزومتر مخزن آرامش در بالا دست شفت سرریز  38
4-3-5- دور سنجی چرخ آبی در ابتدای خروجی شفت 38
4-4- مدلهای هیدرولیکی……………………………………………………………………………………. 39
4-5- آنالیز ابعادی و تعیین پارامترهای موثر………………………………………………………………………………………. 53
4-6- روش چرخ آبی مدور و کالیبراسیون آن به منظور ارزیابی جریان دوفازی………………………………… 56
4-7- سرعت دورانی چرخ آبی و ارتباط آن با استهلاک انرژی  58
4-8- محاسبه انرژی با قیمانده جریان در خروجی سرریز و میزان استهلاک
انرژی در هر مدل………………………… 68
4-10- زمان تحقیق……………………….. 70
 
فصل پنجم: تجزیه و تحلیل نتایج
5-1- کلیات…………………………….. 72
5-2- ارزیابی میزان استهلاک انرژی شفت دندانه ای و بررسی کارایی آن……………………………………. 73
5-2-1- بررسی و مقایسه مدلها از نظر هیدرولیکی. 99
5-3- نتایج حاصل از مقایسه مدلهای مختلف با یکدیگر جهت ارائه
طرح بهینه……………………………… 102
5-4-پوشهای جریان در مدلهای مختلف…………. 104
 
فصل ششم: نتیجه گیری و پیشنهادات
6-1- نتیجه گیری………………………… 119
6-2- پیشنهادات…………………………. 120
 
فهرست منابع و مأخذ……………………….. 121
 
 
 
فهرست جدول ها
 
 
عنوان                                         صفحه
 
جدول 4-1: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 1 44
جدول 4-2: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 2 48
جدول 4-3: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت تیپ 3 ……………………………………….. 52
جدول 4-4: خلاصه ابعادی آزمایشهای صورت گرفته بر روی شفت بدون دندانه ……………………………………….. 52
جدول 4-5 : رابطه دبی و عمق متوسط در کانال با شیب 3%……………………………………….. 59
جدول 4-6 : رابطه دبی و عمق متوسط در کانال با شیب 5%……………………………………….. 60
جدول 4-7 : رابطه دبی و عمق متوسط در کانال با شیب 8%……………………………………….. 61
جدول 4-8 : رابطه دبی و عمق متوسط در کانال با شیب 10%……………………………………………………. 62
جدول 4-9 : رابطه دبی و عمق متوسط در کانال با شیب 13.8%….. 63

پایان نامه

 

جدول 4-10 : مشخصات هیدرولیکی جریان برای حالت فاصله چرخ آبی از کف
کانالmm 6-کل دبیها و شیبها……………….. 64
جدول 4-11 : مشخصات هیدرولیکی جریان برای حالت فاصله چرخ آبی از کف
کانالmm 30-کل دبیها و شیبها………………. 65
جدول 4-12 : مشخصات هیدرولیکی جریان برای هر دو حالت فاصله چرخ آبی از
کف کانال 6 و30 میلیمتر-کل دبیها و شیبها…… 66
ادامه جدول 4-12 : مشخصات هیدرولیکی جریان برای هر دو حالت فاصله
چرخ آبی از کف کانال 6 و30 میلیمتر-کل دبیها و شیبها 67
جدول 4- 13: زمان و نیروی کار صرف شده در این پژوهش  70
جدول 5-1: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 74
جدول 5-2: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 75
 
عنوان                                         صفحه
 
جدول 5-3: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 65*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 76
جدول 5-4: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 77
جدول 5-5: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 78
جدول 5-6: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 55*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 79
جدول 5-7: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 35*30 سانتی متری……………………………………. 80
جدول 5-8: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 30*30 سانتی متری……………………………………. 81
جدول 5-9: مشخصات هیدرولیکی و میزان استهلاک انرژی در مدلهای با شفت 45*30
سانتی متر در پلان و 350 سانتی متر ارتفاع با دندانه های 25*30 سانتی متری……………………………………. 82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست شکل ها
 
 
عنوان                                         صفحه
 
شکل 1-1 : انواع اصلی سرریز………………… 3
شکل 1-2: اتصال بین سرریز مستقیم و استهلاک کننده انرژی   4
شکل 1-3: سرریز پله-حوضچه ای……………….. 4
شکل 1-4: اتصال بین سرریز و پایاب…………… 5
شکل 1-5: فرم کلی سرریز پیشنهادی…………… 6
شکل 2-1: انواع جریان در آبشار ریزشی در کانال منشوری مستطیلی 12
شکل 2-2: سازه ریزشی توسعه یافته…………… 12
شکل 2-3: ریزش جت در یک حوضچه با کف افقی……. 15
شکل 2-4: ضربه جت………………………… 16
شکل2-5: a) جت برخوردی محدود شده از جوانب b) زاویه برخورد δi 17
شکل 2-6: شمای کلی شفت ریزشی آبشاری در Roman aqueduct
و3 رژیم مختلف شکل گرفته در آن……………… 18
شکل 2-7: طرح Vortex drop……………………… 19
شکل 2-8: شفت گردابی………………………. 21
شکل 2-9: المانهای ایجاد کتتده بالشتک آبی مناسب 24
شکل 2-10: طرح مدل آزمایش شده سازه جدید ریزشی گردابی توسط    25
شکل 4-1: سیستم آزمایشگاهی شفت دندانه ای به صورت شماتیک همراه با جزئیات………………………………….. 33
شکل 4-2 : تصویر سیستم آزمایشگاهی- دید از عقب و راست……………………………………. 33
شکل 4-3 : تصویر سیستم آزمایشگاهی- دید از عقب و چپ  34
شکل 4-4 : تصویر سیستم آزمایشگاهی- دید از عقب . 34
شکل 4-5 : تصویر سیستم آزمایشگاهی- دید از جلو… 35
 
عنوان                                         صفحه
 
شکل 4-6 : تصویر سیستم آزمایشگاهی- دید از جلو و راست…  35
شکل 4-7 : تصویر سیستم آزمایشگاهی- دید از جلو و چپ  36
شکل 4-8 : فلومتر الکترو مغناطیسی فلنجی مگاب 3000   37
شکل 4-9: دور سنج لیزری……………………. 37
شکل 4-10 : چرخ آبی مدور استفاده شده از نماهای مختلف 38
شکل 4-11 : پیزومتر مخزن آرامش در بالا دست شفت سرریز 38
شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلان
الف) با6 دندانه با رویه 35*30 سانتی متری   ب) با 8 دندانه با رویه 3*30 سانتیمتری
پ) با 10دندانه با رویه 35*30 سانتیمتری……. 41
ادامه شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلانالف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه 30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 42
ادامه شکل 4-12: حالتهای مختلف مدل با شفت قائم 65*30 سانتی متر در پلان الف) با
8 دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری پ) با
12 دندانه با رویه 25*30 سانتیمتری…………. 43
شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 6
دندانه با رویه 35*30 سانتی متری ب) با 8 دندانه با رویه 35*30 سانتیمتری پ) با 10
دندانه با رویه 35*30 سانتیمتری…………….. 45
ادامه شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 46
ادامه شکل 4-13: حالتهای مختلف مدل با شفت قائم 55*30 سانتی متر در پلان الف) با 8
دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری پ) با 12
دندانه با رویه 25*30 سانتیمتری…………….. 47
شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف) با 6
دندانه با رویه 35*30 سانتی متری ب) با 8 دندانه با رویه 35*30 سانتیمتری پ) با 10
دندانه با رویه 35*30 سانتیمتری…………….. 49
ادامه شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف) با 6
دندانه با رویه 30*30 سانتی متری ب) با 8 دندانه با رویه 30*30 سانتیمتری پ) با 10
دندانه با رویه 30*30 سانتیمتری…………….. 50
عنوان                                         صفحه
 
ادامه شکل 4-14: حالتهای مختلف مدل با شفت قائم 45*30 سانتی متر در پلان الف)
با 8 دندانه با رویه 25*30 سانتی متری ب) با 10 دندانه با رویه 25*30 سانتیمتری
پ) با 12 دندانه با رویه 25*30 سانتیمتری……. 51
شکل 4-15: مدل با شفت قائم 65*30 سانتی متر در پلان بدون دندانه……………………………………….. 52
شکل 4-16 : ماکزیمم ارتفاع موثر بر سرعت دورانی چرخ  58
شکل 4-17: رابطه دبی بر حسب عمق در کانال با شیب 3%  59
شکل 4-18 : رابطه دبی بر حسب عمق در کانال با شیب 5% 60
شکل 4-19 : رابطه دبی بر حسب عمق در کانال با شیب 8% 61
شکل 4-20 : رابطه دبی بر حسب عمق در کانال با شیب 10% 62
شکل 4-21 : رابطه دبی بر حسب عمق در کانال با شیب8/13%    63
شکل 4-22 : رابطه دور بر دقیقه چرخ آبی با مربع سرعت جریان در دو حالت فاصله
چرخ از کف کانال………………………….. 65
شکل 4-23 : رابطه دور بر دقیقه چرخ آبی با مربع سرعت جریان در کل دبیها و شیبها
و فواصل مختلف چرخ آبی از کف کانال ………… 68
شکل 5-1 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 65*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری
(6، 8 و 10 دندانه) ب) بادندانه های30 سانتی متری (6، 8 و 10 دندانه) پ) با
دندانه های 25 سانتی متری (8، 10 و 12دندانه… 83
شکل 5-2 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 55*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری
(6، 8 و 10 دندانه) ب) با دندانه های 30 سانتی متری (6، 8 و 10 دندانه) پ) با
دندانه های 25 سانتی متری (8، 10 و 12 دندانه).. 84
شکل 5-3 : مقایسه استهلاک انرژی نسبت به دبی جریان جهت شفت 45*30
سانتیمتری با تغییر تعداد دندانه ها الف) با دندانه های 35 سانتی متری (6، 8 و 10 دندانه)
ب) بادندانه های 30 سانتی متری (6، 8 و 10 دندانه) پ) با دندانه های 25 سانتی متری
(8، 10 و 12 دندانه)……………………… 86
شکل 5-4 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 65*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند…………………………………… 87
 
عنوان                                         صفحه
 
شکل 5-5 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 55*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند………………………………….. 88
شکل 5-6 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک انرژی را در شفت با اندازه 45*30 سانتیمتری در هر 3 نوع
دندانه (35، 30 و 25 سانتی متری) را دارند……………    88
شکل 5-7 : مقایسه میزان استهلاک نسبی انرژی در برابر دبی، برای مدلهایی که
بیشترین مقدار استهلاک را در هر سه سایز شفت (65*30 ، 55*30 و 45*30
سانتیمتری) در هر 3 نوع دندانه (35، 30 و 25 سانتیمتری) را دارند……………………………………….. 89
شکل شماره 5-8: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت با
اندازه 65*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری ب) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ)با 10 دندانه در اندازه های 35، 30 و 25 سانتیمتری………………………………. 90
شکل شماره 5-9: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت
با اندازه 55*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری ب) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ) با 10 دندانه در اندازه های 35، 30 و 25 سانتیمتری………………………………. 91
شکل شماره 5-10: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی، جهت شفت
با اندازه 45*30 سانتیمتری با تغییر در اندازه دندانه ها الف) با 6 دندانه در اندازه های
35، 30 و 25 سانتیمتری پ) با 8 دندانه در اندازه های 35، 30 و 25 سانتیمتری
پ) با10 دندانه در اندازه های 35، 30 و 25 سانتیمتری…   93
شکل شماره 5-11: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت سه سایز
مختلف شفت (65*30، 55*30 و 45*30 سانتیمتری) با تعداد دندانه های مساوی
و هم اندازه الف) با 6 دندانه 35 سانتیمتری ب) با 8 دندانه 35 سانتیمتری
پ) با 10 دندانه 35 سانتیمتری………………. 95
شکل شماره 5-12: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت سه سایز
مختلف شفت (65*30، 55*30 و 45*30 سانتیمتری) با تعداد مساوی دندانه های 30
سانتی متری الف) با 6 دندانه 30 سانتیمتری ب) با 8 دندانه 30 سانتیمتری
پ) با 10 دندانه30 سانتیمتری………………. 96
 
عنوان                                         صفحه
 
شکل شماره 5-13: تغییرات میزان استهلاک نسبی انرژی بر حسب دبی جهت
سه سایز مختلف شفت(65*30، 55*30 و 45*30 سانتیمتری) با تعداد مساوی
دندانه های 25 سانتی متری الف) با 8 دندانه 25 سانتیمتری ب) با 10 دندانه 25
سانتیمتری پ) با 12 دندانه 25 سانتیمتری……. 98
شکل 5-14: پوش جریان برای مدل شماره 1 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 35*30 سانتی متری در دبی 5 لیتر در ثانیه – جریان از نوع 1 ……………………………………… 105
شکل 5-15: پوش جریان برای مدل شماره 1 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 35*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 105
شکل 5-16: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 106
شکل 5-17: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 106
شکل 5-18: پوش جریان برای مدل شماره 4 با شفت 65*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 107
شکل 5-19: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 107
شکل 5-20: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 108
شکل 5-21: پوش جریان برای مدل شماره 5 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 108
شکل 5-22: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 109
شکل 5-23: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 109
شکل 5-24: پوش جریان برای مدل شماره 6 با شفت 65*30 سانتیمتر و 10 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 110
شکل 5-25: پوش جریان برای مدل شماره 7 با شفت 65*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 110
شکل 5-26: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمتر و 12 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 (ریزش از وسط) …………………………… 111
عنوان                                         صفحه
 
شکل 5-27: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمترو 12 دندانه
با رویه 25*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 1 ……………………………………… 111
شکل 5-28: پوش جریان برای مدل شماره 9 با شفت 65*30 سانتیمترو 12 دندانه
با رویه 25*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 2 در دندانه های
بالایی و نوع 1 در دندانه های پایینی ……….. 112
شکل 5-29: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 ……………………………………….. 113
شکل 5-30: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 113
شکل 5-31: پوش جریان برای مدل شماره 13 با شفت 55*30 سانتیمتر و 6 دندانه
با رویه 30*30 سانتی متری در دبی 40 لیتر در ثانیه- جریان از نوع 1 ……………………………………… 114
شکل 5-32: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 2 ……………………………………….. 114
شکل 5-33: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 و تاحدودی 3 …………………………… 115
شکل 5-34: پوش جریان برای مدل شماره 21 با شفت 45*30 سانتیمتر و 10 دندانه
با رویه 35*30 سانتی متری در دبی 35 لیتر در ثانیه- جریان از نوع 3 …………………………………….. 115
شکل 5-35: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 5 لیتر در ثانیه- جریان از نوع 1 و تا حدودی2 …………………………….. 116
شکل 5-36: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمترو 8 دندانه
با رویه 25*30 سانتی متری در دبی 20 لیتر در ثانیه- جریان از نوع 2 ……………………………………… 116
شکل 5-37: پوش جریان برای مدل شماره 25 با شفت 45*30 سانتیمتر و 8 دندانه
با رویه 25*30 سانتی متری در دبی 35 لیتر در ثانیه- جریان از نوع2 و تا حدودی 3 ……………………………. 117
 
 
 
 
 
 
 
 
 
فهرست علائم اختصاری
 
 
Ca: غلظت مکانی هوا، که به صورت نسبت واحد حجم هوا به واحد حجم مخلوط آب و هوا تعریف می شود
Cmean: غلظت متوسط هوای جریان که بر حسب عمق متوسط گیری شده است
d: عمق جریان
D: قطر شفت
dc: عمق بحرانی جریان
dw: عمق معادل ستون آب خالص (بدون هوا)
Eδ مقدار انرژی تلف شده در طول سرریز
e: عدد نپر
ΔE: تغییرات ارتفاع (بلندای) کل انرژی جریان
E: ارتفاع (بلندای) کل انرژی جریان
E0: انرژی کل جریان در بالادست سرریز (داخل مخزن) نسبت به تراز کف خروجی سرریز
F: عدد فرود
g: شتاب جاذبه زمین
h: عمق جریان در بالا دست
H: فاصله قائم تراز کف ورودی سرریز در بالا دست تا تراز کف خروجی سرریز
Hdam: ارتفاع سد یا سرریز سد
L طول روی هر دندانه (پله) در جهت جریان
λ: ضریب مقیاس (λ=lp/lm نسبت ابعادی نمونه اصلی به مدل)
μw : لزجت دینامیکی آب
Q: دبی کل جریان
QD: دبی طراحی
q: دبی جریان در واحد عرض
R: شعاع هیدرولیکی
Re: عدد رینولدز
Sf : شیب اصطکاکی
ρ: جرم حجمی
wρ: جرم حجمی آب
σ: کشش سطحی آب
Uw: سرعت متوسط جریان
V : سرعت متوسط جریان
W: عرض سرریز
We: عدد وبر
y: عمق متوسط جریان در خروجی سرریز
z : فاصله بین هر دو دندانه متوالی
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
فصل اول
 
 
 
 
 
 

 

 
 
 
 
 
مقدمه
 
 
1-1-کلیات
 
در طراحی سد باید اصول هیدرولیک رعایت شود تا پایداری سد به خطر نیافتد. از جمله این اصول ساخت سرریزی متناسب با سد مورد نظر جهت تخلیه آب اضافی از مخزن می باشد. سرریز عبارت است از سازه ای که آب اضافی را خصوصاً در زمان های سیلابی که جریان آب برای بدنه سد و تاسیسات وابسته خطر ایجاد می کند و ممکنست باعث خرابی آنها شود، دفع کند و به همین سبب ضرورت دارد که سرریزی جهت دفع سیلاب و محافظت از سد و تاسیسات وابسته در نظر گرفته شود.
سرریزها به انواع مختلف تقسیم بندی می شوند. انتخاب نوع سرریز بستگی به فاکتورهایی از قبیل: نوع سد، دبی طرح، وضعیت فونداسیون، توپوگرافی و شرایط اقتصادی طرح دارد. سرریزهایی که در بدنه خود سد وزنی بتنی ساخته می شود، از نوع سرریزهای روگذر[1] می باشند. این نوع سرریز ممکن است همراه سدهای قوسی یا پایه دار نیز به کار برده شود. انواع دیگر سرریزها که به صورت جدا از بدنه سد طراحی می شوند عبارتند از: سرریز جانبی[2]، سرریز نیلوفری[3]، سرریز شوت[4] و سرریز سیفونی[5]. انواع دیگری از سرریزها نیز وجود دارند که به همراه سدهای کوچک به کار برده می شوند و قدرت دفع دبی اندکی دارند این سرریزها عبارتند از: سرریز با ورودی قائم[6] وسرریز با ورودی جعبه ای[7]. به طورکلی در طراحی سرریز سد، دبی طرح با دوره بازگشت معین انتخاب می شود که بستگی به اهمیت طرح دارد. سرریز باید قادر باشد دبی طرح را در موقع سیلابی به طریقی دفع کند که صدمه ای به بدنه سد وارد نگردد.[1]
 
 
 
1-2- انواع سرریز [2]
 
سازه روگذر یا سرریز را بسته به شرایط محل و خصوصیا ت هیدرولیکی به صورتهای مختلفی می توان طراحی کرد مانند:

  • سرریز جلویی[8] ( مستقیم )
  • سرریز جانبی[9]
  • سرریز لاله ای[10]

 
 
 
 
 
 
 
شکل 1-1 : انواع اصلی سرریز: a) مستقیم، b) جانبی، c) لاله ای. [2]
 
در سازه های دیگری مانند سرریز کنگره ای[11] از سرریز مستقیم استفاده میشود که تاج آن در پلان به شکل مثلثی یا ذوزنقه های متوالی است. نوع دیگر آن، سریز روزنه ای[12] است که در سدهای قوسی استفاده می شود.
سرریز لاله ای در سال 1930 معرفی و اقتصادی بودن آن ثابت شده است، مشروط به آنکه تونل انحراف را بتوان به عنوان مجرای افقی این سرریز استفاده کرد. سازه این سرریز شامل سه قسمت اصلی است که عبارت است از : آبگیر، مجرای عمودی با یک زانوی 90 درجه و یک تونل تقریباً افقی. به منظور جلو گیری از خسارت ناشی از کاویتاسیون، هوا از طریق مجرای هواده در محل تبدیل بین مجرای عمودی و تونل افقی تامین می شود
استفاده از سرریز جانبی در مناطقی که استفاده از سرریز مستقیم عملی نیست، مانند سدهای خاکی یا وقتی که موقیعت دیگری در کنار سد ارتباط بهتر و آسانتری را با حوضچه آرامش امکان پذیر می سازد، مناسب است.
سرریز مستقیم ( اوجی[13]) به دلیل ساده بودن و امکان برقراری ارتباط مستقیم مخزن با پایاب، سرریز استانداردی است که بیشتر مورد استفاده قرار می گیرد. این نوع سرریز را معمولا می توان در هر دو نوع سد قوسی و وزنی استفاده کرد.
قسمت پایین دست سرریز مستقیم ممکن است شکلهای مختلفی داشته باشد. معمولا یک مجرایی ( شوت یا تنداب ) به تاج سرریز متصل می شود و به عنوان سازه انتقالی بین تاج سرریز و سازه استهلاک کننده انرژی عمل میکند (شکل a-2). همچنین این سرریز را می توان روی سد قوسی ساخت در این حالت جریان عبوری از روی آن به پایاب می ریزد، در این حالت دیوار پایین دست سرریز، همان وجه پایین دست سد است(شکل b-2). در نوع دیگری از طراحی، از سرریزهای متوالی[14] ( پلکانی ) استفاده می شود که در آن، استهلاک انرژی از انتهای تاج تا محل پایاب ( در کل طول سرریز ) صورت می گیرد و بدین ترتیب از طول حوضچه آرامش می توان کاست (شکل c-2)، همچنین نوع جدیدی از سرریز پلكانی با عنوان سرریز پله-حوضچه ای، با الهام از فرایند طبیعی فرم پله حوضچه ای در بستر رودخانه های كوهستانی با شیب زیاد، با رویكرد افزایش مطمئن زبری شكل بستر نیز ارائه گردیده است (شکل 3) [3].
 
[1] – Overflow spillways
[2] – Side spillways
[3] – Morning glory spillways
[4] – Concrete chute spillways
[5] – Siphon spillways
[6] – Drop inlet spillways
[7] – Box inlet spillways
[8] – Frontal overflow
[9] – Side channel overflow

موضوعات: بدون موضوع  لینک ثابت
 [ 07:26:00 ب.ظ ]




روش طراحی آیین­نامه­ های موجود بر اساس طراحی مقاطع و اعضا می­باشد و آیین­نامه­ ها در مورد بررسی ظرفیت کل قاب و یا طبقات آن اجباری برای طراحان قرار نداده­اند. در این پژوهش با بررسی مود زوال قاب­های منظم سه طبقه و سه دهانه بتن­آرمه تحت تحلیل استاتیکی غیرخطی بارافزون در محیط نرم­افزار OpenSees، نشان داده شده است که در بعضی موارد زوال طبقه یا کل قاب (مود زوال سیستمی سازه) می ­تواند حاکم باشد. به این صورت که قبل از زوال یکی از مفصل­های پلاستیک، ظرفیت کل قاب یا یکی از طبقات آن به میزان قابل توجهی افت کرده و کاربری خود را از دست می­دهد. علاوه بر این تأثیر پارامترهای مختلف طراحی، ظرفیتی و رفتاری قاب مانند درصد میلگردهای طولی و عرضی مقاطع، نسبت برش پایه قاب به وزن کل آن در لحظه زوال (Plastic g-Factor)، g-Factor کاربردی، شکل­پذیری نهایی، دوره تناوب مود اول و متوسط شاخص ­های آسیب مقاطع بر مودهای زوال قاب­ها مورد بررسی قرار گرفت. در نهایت مؤثرترین معیارهایی که بدون نیاز به انجام تحلیل استاتیکی غیرخطی بارافزون طراح را قادر به شناسایی امکان وقوع مود زوال سیستمی سازه می­نماید به صورت پارامتر g-Factor کاربردی و نیز ترکیب نسبت درصد میلگرد طولی به میلگرد عرضی ستون و دوره تناوب مود اول سازه تشخیص داده شد. معیارهایی که از طریق انجام تحلیل استاتیکی غیرخطی بارافزون محاسبه و در تفکیک قاب­های با مود زوال مفصل پلاستیک از سایر قاب­ها مؤثر هستند نیز به صورت پارامتر Plastic g-Factor و ترکیب پارامتر g-Factor کاربردی و متوسط شاخص ­های آسیب مقاطع معرفی شده ­اند.
 
کلید واژه ­ها: قاب­های دوبعدی بتن­آرمه، تحلیل استاتیکی غیرخطی بار­افزون، مود زوال قاب­های بتن­آرمه، مود زوال سیستمی سازه، شاخص آسیب، نرم­افزار OpenSees
 
 
 
فهرست مطالب
 
 
عنوان                                                                                                    صفحه
فصل اول: مقدمه                                                                                                               1
1-1- پیش­گفتار.. 2
1-2- طراحی لرزه­ای.. 3
1-3- مهندسی لرزه­ای بر مبنای سطح عملکرد.. 4
1-3-1- چارچوب کلی طراحی لرزه­ای بر مبنای سطح عملکرد.. 7
1-3-2- شکل­پذیری (Ductility).. 10
1-3-3- شاخص آسیب.. 11
1-4- سیستم باربر لرزه­ای.. 14
1-5- روش­های مختلف تحلیل غیر ارتجاعی.. 15
1-5-1- تحلیل دینامیکی غیرخطی.. 16
1-5-2- تحلیل استاتیکی غیرخطی بارافزون.. 17
1-5-2-1- توصیف تحلیل استاتیکی غیرخطی بارافزون.. 17
1-5-2-2- برخی از روش­های تحلیل استاتیکی غیرخطی.. 19
1-5-2-3- شکل توزیع بار جانبی در ارتفاع ساختمان.. 21
1-6- معیارهای زوال (Failure Criteria).. 25
1-7- بیان مسئله و هدف تحقیق.. 26
1-8- روند دستیابی به هدف تحقیق.. 26
1-9- خلاصه.. 28
 
عنوان                                                                                                    صفحه
فصل دوم: تاریخچه تحقیقات گذشته                                                                                             30
2-1- پیش­گفتار.. 31
2-2- شاخص آسیب.. 33
2-2-1- شاخص ­های آسیب موضعی.. 33
2-2-2- شاخص ­های آسیب کلی.. 36
2-2-3- بررسی مقایسه­ای چند شاخص آسیب.. 39
2-3- معرفی روابط مربوط به چند شاخص آسیب شناخته شده   42
2-3-1- شاخص آسیب پارک و انگ.. 42
2-3-2- شاخص آسیب شکل­پذیری برای مقاطع.. 43
2-3-3- شاخص آسیب شکل­پذیری برای قاب­ها.. 44
2-3-4- شاخص آسیب انرژی.. 45
2-3-5- شاخص آسیب خستگی Low-Cycle. 46
2-3-6- شاخص آسیب نرم­شدگی بیشینه.. 46
2-4- نحوه مدل­سازی رفتار سازه.. 47
زوال قاب­های بتن­آرمه.. 48
2-6- خلاصه.. 48
فصل سوم: نحوه مدل­سازی و انجام تحلیل غیرخطی                                                                     51
3-1- پیش­گفتار.. 52
3-2- معرفی نرم­افزار OpenSees. 52
3-3- معرفی و مدل­سازی قاب­های دو بعدی بتن­آرمه مورد مطالعه   54
3-3-1- مشخصات فیزیکی قاب­های دو بعدی انتخابی.. 54
3-3-2- نحوه بارگذاری قاب­ها.. 54
3-3-3- چگونگی مدل­سازی قاب­های دو بعدی بتن­آرمه در نرم­افزار OpenSees  55
3-4- چگونگی انجام تحلیل و پایش پاسخ­های موردنظر سازه   57
3-5- طراحی قاب­ها.. 57
3-6- محاسبه شاخص آسیب.. 71
3-6-1- شاخص آسیب انتخابی.. 71
3-6-2- محاسبه شاخص آسیب شکل­پذیری برای مقاطع بحرانی.. 72
عنوان                                                                                                     صفحه
3-6-3- محاسبه شاخص آسیب شکل­پذیری برای قاب­ها.. 74
3-7- خلاصه.. 74
فصل چهارم: ارائه و بررسی نتایج تحلیل­های غیرخطی قاب­های مورد مطالعه                               77
4-1- پیش­گفتار.. 78
4-2- روند انجام تحلیل غیرخطی قاب­ها و نتایج مربوط به آن   79
4-2-1- دسته­بندی قاب­ها بر اساس مود زوال آن­ها.. 79
4-2-2- توزیع مفصل­های پلاستیک در لحظه زوال قاب­ها.. 82
4-2-3- بررسی تغییرات پارامترهای تعریف شده بر اساس شاخص آسیب مقاطع در طول تحلیل.. 88
4-2-4- بررسی تأثیر پارامترهای مختلف طراحی، ظرفیتی و رفتاری در نوع زوال قاب­ها.. 98
4-3- خلاصه.. 114
فصل پنجم: خلاصه، نوآوری و نتیجه ­گیری                                                                                   116
5-1- خلاصه تحقیق.. 117
5-2- نوآوری تحقیق.. 119
5-3- نتیجه ­گیری.. 119
فهرست منابع و مآخذ                                                                                                                 121
پیوست یک: امكانات نرم­افزار OpenSees                                                                                   125
پیوست دو: بررسی مدل­های مختلف ارائه شده برای مصالح                                                         130
رفتار بتن محصور شده و محصور نشده.. 131

پایان نامه

 

رفتار میلگردهای فولادی مسلح کننده.. 136
فهرست منابع و مآخذ پیوست دو.. 143
 
 
 
 
 
 
 
 
فهرست شکل­ها
 
 
عنوان                                                                                           صفحه
 
شکل 1- 1 نمودار جریانی فرایند طراحی بر اساس سطح عملکرد.. 8
شکل 1- 2 نمودار تعیین نقاط لازم برای محاسبه شکل­پذیری.. 11
شکل 1- 3 نمودار جریانی روش تحلیل دینامیکی غیرخطی.. 16
شکل 1- 4 منحنی ظرفیت کلی (بارافزون) یک سازه.. 18
شکل 1- 5 روش طیف ظرفیت و نمودارهای ظرفیت و تقاضا نمونه.. 20
شکل 1- 6 منحنی نمونه طیف تقاضا برای شکل­پذیری­های ثابت در روش N2  21
شکل 1- 7 شکل­های توزیع بار جانبی در تحلیل بار فزآینده.. 25
شکل 2- 1 مقایسه نتایج ارزیابی آسیب با شاخص آسیب سه­بعدی، شاخص آسیب پارک و انگ، و شاخص آسیب جابجایی نسبی بین­طبقه­ای: (a) بارگذاری تک­محوره، 2D؛ (b) بارگذاری تک­محوره، 3D؛ و © بارگذاری دومحوره، 3D 40
شکل 3- 1 ایده­آل سازی منحنی لنگر– انحنا.. 73
شکل 3- 2 ایده­آل سازی منخنی ظرفیت قاب.. 74
شکل 4- 1 مشخصات قاب، نحوه توزیع مفاصل پلاستیک و مقادیر شاخص آسیب مربوطه در لحظه زوال و منحنی ظرفیت قاب (حالت زوال: زوال مفصل پلاستیک)   84
شکل 4- 2 مشخصات قاب، نحوه توزیع مفاصل پلاستیک و مقادیر شاخص آسیب مربوطه در لحظه زوال و منحنی ظرفیت قاب (حالت زوال: زوال طبقه).. 85
شکل 4- 3 مشخصات قاب، نحوه توزیع مفاصل پلاستیک و مقادیر شاخص آسیب مربوطه در لحظه زوال و منحنی ظرفیت قاب (حالت زوال: زوال قاب).. 86
شکل 4- 4 مشخصات قاب، نحوه توزیع مفاصل پلاستیک و مقادیر شاخص آسیب مربوطه در لحظه زوال و منحنی ظرفیت قاب (حالت زوال: زوال ترکیبی طبقه و مفصل پلاستیک).. 87
 
عنوان                                                                                           صفحه
شکل 4- 5 مشخصات قاب، نحوه توزیع مفاصل پلاستیک و مقادیر شاخص آسیب مربوطه در لحظه زوال و منحنی ظرفیت قاب (حالت زوال: زوال ترکیبی قاب و مفصل پلاستیک).. 88
شکل 4- 6 بیشینه شاخص ­های آسیب نسبت به جابجایی نسبی تراز بام   91
شکل 4- 7 متوسط شاخص ­های آسیب نسبت به جابجایی نسبی تراز بام   91
شکل 4- 8 متوسط شاخص ­های آسیب تیرها نسبت به جابجایی نسبی تراز بام   92
شکل 4- 9 متوسط شاخص ­های آسیب ستون­ها نسبت به جابجایی نسبی تراز بام   92
شکل 4- 10 نسبت متوسط شاخص ­های آسیب ستون­ها به متوسط شاخص ­های آسیب تیرها نسبت به جابجایی نسبی تراز بام.. 93
شکل 4- 11 متوسط شاخص ­های آسیب طبقه اول نسبت به جابجایی نسبی تراز بام   94
شکل 4- 12 متوسط شاخص ­های آسیب طبقه دوم نسبت به جابجایی نسبی تراز بام   94
شکل 4- 13 متوسط شاخص ­های آسیب طبقه سوم نسبت به جابجایی نسبی تراز بام   95
شکل 4- 14 بیشینه شاخص ­های آسیب نسبت به متوسط شاخص ­های آسیب   96
شکل 4- 15 متوسط شاخص ­های آسیب طبقه سوم نسبت به متوسط کل شاخص ­های آسیب مقاطع   96
شکل 4- 16 متوسط شاخص ­های آسیب ستون­ها نسبت به متوسط شاخص ­های آسیب تیرها   97
شکل 4- 17 شاخص آسیب شکل­پذیری قاب­ها نسبت به جابجایی نسبی تراز بام   97
شکل 4- 18 بیشینه شاخص آسیب نسبت به متوسط شاخص آسیب (در لحظه زوال)   103
شکل 4- 19 Plastic g-Factor (در لحظه زوال) نسبت به شکل­پذیری نهایی قاب   104
ستون   104
ستون.. 105
تیر.. 106
ستون نسبت به دوره تناوب مود اول.. 107
قاب.. 107
ستون.. 108
ستون.. 109
شکل 4- 27 شکل­پذیری نهایی نسبت به دوره تناوب مود اول.. 109
قاب نسبت به شکل­پذیری نهایی.. 110
شکل 4- 29 متوسط شاخص ­های آسیب نسبت به g-Factor کاربردی.. 111
شکل 4- 30 متوسط شاخص ­های آسیب ستون­ها نسبت به شکل­پذیری نهایی   111
شکل 4- 31 متوسط شاخص ­های آسیب نسبت به شکل­پذیری نهایی.. 112
شکل 4- 32 متوسط شاخص ­های آسیب تیرها نسبت به متوسط شاخص آسیب ستون­ها   113
شکل پ2- 1 مدل مندر برای بتن.. 131
شکل پ2- 2 مدل هوشیکوما برای بتن.. 135
شکل پ2- 3 رفتار میلگرد مدفون در بتن.. 137
شکل پ2- 4 اثر لغزش پیوند (Bond Slip) در رفتار عنصر.. 140
عنوان                                                                                                     صفحه
شکل پ2- 5 منحنیِ چرخه­ای فولاد.. 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فهرست جدول­ها
 
 
عنوان                                                                                              صفحه
 
جدول 1- 1 سطوح عملکرد سازه­ای در بعضی از دستورالعمل­های بهسازی لرزه­ای   6
جدول 1- 2 بعضی از شاخص ­های آسیب متداول.. 13
جدول 2- 1 شاخص ­های آسیب بر پایه مدل­های خطی معادل.. 37
 
جدول 3- 1 مشخصات فیزیکی مصالح در مدل­های مورد استفاده برای بتن و فولاد   56
جدول 3- 2 مشخصات قاب­های مدل شده.. 60
جدول 4- 1 تعداد قاب­های انتخابی به تفکیک مود زوال.. 82
جدول 4- 2 پارامترهای تعریف شده بر اساس شاخص آسیب مقاطع و فضاهای بررسی شده توسط آن­ها.. 89
جدول 4- 3 پارامترهای موردنظر برای تفکیک قاب­های با مود زوال مفصل پلاستیک و حدود آن­ها.. 99
جدول 4- 4 فضاهای بررسی شده برای تفکیک و میزان خطای آن­ها برای دسته­بندی قاب­ها.. 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

فصل اول

 
 
 
 
 
 
 
 
 
 
 
 
 

1-  مقدمه

 
 

1-1- پیش­گفتار

 
کشور ایران از جمله مناطق زلزله­خیز جهان است که هر چند وقت یک بار زلزله­های شدیدی در آن به وقوع می­پیوندد و متأسفانه تاکنون خسارات مالی و جانی زیادی نیز در بر داشته است. تحقیقات در زمینه علم مهندسی زلزله همواره با هدف کاهش خسارات جبران ناپذیر پدیده زلزله ادامه داشته است. با توجه به پیشرفت علوم کاربردی و توان پردازش رایانه­ها، ایده­ها و دیدگاه ­های مهندسی زلزله نیز ارتقاء قابل توجهی پیدا کرده است. مقاوم­سازی ساختمان­های موجود در برابر زمین­لرزه نیز به دلیل تأثیر قابل توجهی که در نجات جان انسان­ها دارد به صورت چشمگیری در حال گسترش است. بی­تردید اساسی­ترین مرحله در طراحی یا مقاوم­سازی سازه­ها در برابر زمین­لرزه، تعیین نیروهای لرزه­ای در سازه­ها می­باشد.
یک سازه ایمن و مقاوم در برابر زمین­لرزه در درجه اول می­باید امنیت جانی ساکنان را فراهم ساخته و در درجه دوم خسارات مالی و اقتصادی ناشی از زلزله را کمینه سازد. برای رسیدن به این هدف باید اطمینان پیدا کرد که سازه موردنظر با پشت سر گذاشتن زمین لرزه­هایی با شدت­های مختلف در شرایط قابل قبولی باقی می­ماند. بنا به تعریف یک ساختار مقاوم لرزه­ای ساختاری است که در زلزله­های خفیف که تقریباً به صورت مداوم به وقوع می­پیوندند بدون خسارت باقی بماند، در زلزله­های متوسط دچار خسارات سازه­ای نشود و خسارات غیرسازه­ای اندکی به آن وارد شود و در زلزله­های بزرگ که به ندرت به وقوع می­پیوندد پایدار بماند و دچار خرابی کلی نشود، به طوری که جان ساکنین مورد تهدید قرار نگیرد ]1[. رسیدن به این اهداف نیازمند به­ کارگیری روش­های نوین طراحی لرزه­ای و مهندسی زلزله، استفاده از سیستم­های باربر و مقاوم سازه­ای و سیستم­های ایمن غیرسازه­ای و بهره­ گیری از تکنولوژی­های اجرای مناسب می­باشد.

1-2- طراحی لرزه­ای

 
یک سازه در طول عمر مفید خود عموماً در معرض بارهای مختلف و ترکیبات آن­ها قرار می­گیرد. عملکرد بارهای لرزه­ای معمولاً عامل اساسی در طراحی سازه­­ها در نواحی لرزه­خیز می­باشد. طراحی لرزه­ای سازه­ها با هدف تأمین مقادیر ظرفیتی مورد نیاز سازه (از جمله مقاومت، سختی، شکل­پذیری و …)، در اعضای سازه­ای و غیرسازه­ای، به نحوی که با گذراندن سطح مشخصی از خطر زلزله، ساختمان با ضریب اطمینان قابل قبولی در سطح عملکردی مورد انتظار خود باقی بماند، صورت می­گیرد.
به این ترتیب سه مفهوم اصلی در طراحی لرزه­ای ساختمان­ها مطرح می­ شود:
– سطح خطر زلزله[1]
– سطح عملکرد[2] مورد انتظار پس از زلزله
– سطح اطمینان[3]
سطح خطر زلزله به عنوان تنها پارامتر طراحی سال­هاست که مبنای فلسفه طراحی لرزه­ای یک سطحی در بسیاری از آئین نامه­های زلزله بوده است. با وقوع زلزله­های دهه 1990 از جمله زلزله سال 1994 نورتریج[4] و میزان خسارات بسیار زیاد ناشی از آن­ها، تفکر طراحی لرزه­ای بر مبنای سطح عملکرد[5] (PBSD) با انتشار دستورالعمل [6]SEAOC Vision 2000 ]2[ متولد شد. با توجه به طبیعت تصادفی بودن زلزله و رفتار سازه، می­توان با تعیین حوزه اطمینان برای در نظر گرفتن احتمالات در طراحی، روش طراحی را به طراحی لرزه­ای احتمالاتی بر مبنای سطح عملکرد[7] تغییر داد ]3[.

1-3- مهندسی لرزه­ای بر مبنای سطح عملکرد

 
به مجموعه ­ای از فرایندهای طراحی، ارزیابی، ساخت و نگهداری سازه­های مهندسی به طوری که سازه حاصل بتواند شدت­های متفاوتی از ارتعاش زمین­لرزه را با تحمل سطوح محدودی از خسارت پشت سر بگذارد، مهندسی لرزه­ای بر مبنای سطح عملکرد[8] گفته می­ شود. در واقع مهندسی لرزه­ای بر مبنای سطح عملکرد شامل انتخاب سیستم سازه­ای و هندسه مناسب، انتخاب معیارهای مناسب طراحی و ارائه جزئیات اجرایی اجزای سازه­ای و غیرسازه­ای، همچنین اعمال نظارت به کیفیت اجرا و عملیات مراقبت و نگهداری سازه در طول زمان است، به گونه­ ای که خسارت ایجاد شده در سازه موردنظر، در سطح مشخصی از ارتعاش پایه با حوزه اطمینان مناسب، از مقدار حدی مجاز تجاوز نکند. طراحی لرزه­ای بر مبنای سطح عملکرد زیر مجموعه ­ای از مهندسی لرزه­ای بر مبنای سطح عملکرد می­باشد که به فرایند طراحی می ­پردازد. به عبارتی مجموعه اقدامات در مرحله طراحی اعم از انتخاب سطوح عملکرد، بررسی و ارزیابی ساختگاه، انتخاب الگوی طراحی، طراحی اولیه و نهایی، کنترل کفایت طرح و … به نام طراحی لرزه­ای بر مبنای سطح عملکرد خوانده می­ شود ]4 و 3[.
[1] Seismic Risk Level
[2] Performance Level
[3] Reliability Level

موضوعات: بدون موضوع  لینک ثابت
 [ 07:26:00 ب.ظ ]




تکه هایی از متن به عنوان نمونه :
چکیده
 
نقش سدهای زیر زمینی در کنترل مخازن و تامین آب زیر زمینی
 
به کوشش
محمد متدین اعتمادی
 
سد زیر زمینی سازه ای است که به منظور ایجاد مانع در برابر جریان طبیعی آب زیر زمینی و ایجاد یک مخزن مصنوعی طراحی و ساخته می شود. در دهه های اخیر ساخت این نوع سد در مناطق خشک و نیمه خشک مورد توجه قرار گرفته است. در این مناطق آب زیر زمینی تنها منبع اصلی آب مصرفی مردم منطقه جهت مصارف روزانه و در مواردی برای تامین آب مورد نیاز برای کشاورزی می باشد. استفاده از سد زیر زمینی به منظور ذخیره سازی آب مشکلاتی نظیر نرخ بالای تبخیر در مناطق خشک و نیمه خشک، آلودگی آب زیر زمینی و ورود آب شور به منابع آب شیرین را تا حد مطلوبی حل می كند. بحث طراحی و محل مناسب برای اجرای سد زیرزمینی مانند سدهای سطحی مرسوم، از مهمترین مباحث در عملكرد اینگونه سدها می باشد، به همین دلیل علاوه بر بررسی اطلاعات مربوط به شرایط ژئوتکنیکی، ژئو فیزیکی و زمین شناسی منطقه، بررسی ویژگیهای هیدرولوژیکی منطقه، شكل سد و مصالح مورد استفاده در ساخت سد زیر زمینی ضروری می باشد. در این پایان نامه علاوه بر توصیف سد زیرزمینی و بیان کاربردها به مدلسازی سد زیرزمینی در آبرفت ماسه ای بر اساس پارامترهای مختلف ماسه و جنسهای مختلف بدنه سد پرداخته شده است. بر اساس مدلسازی سد زیرزمینی مشخص گردید که با افزایش زاویه اصطکاک داخلی خاک، جنسهای انعطاف پذیر نظیر بتن پلاستیک برای ساخت سد مناسبتر می باشند. مقایسه مدل موهر-کولمب و خاک سخت شونده نشان می دهد که در حالت خاک سخت شونده مقادیر ممان خمشی و نیروی برشی در بدنه سد نسبت به مدل موهر-کولمب کوچکتر می باشد. همچنین مقدار جابجایی کل در مدل موهر-کولمب بزرگتر از مدل خاک سخت شونده می باشد.
 
 
 
 
 
 
 
 
فهرست مطالب
 
 
عنوان                                         صفحه
 
فصل اول: مقدمه
1.1تاریخچه سدهای زیرزمینی………………. 3
 
فصل دوم: بررسی سد های زیرزمینی
1.2 سد های زیر سطحی یا مدفون……………. 5
1.1.2 روش طراحی برای آرایش تعداد زیادی از چاه های پمپاژ  12
2.2 سدهای نیمه مد فون…………………. 13
3.2 استفاده از سدهای زیرزمینی در معادن…… 19
1.3.2 تخمین ضخامت سد بر اساس مقاومت خرد شدگی مصالح  19
2.3.2 تخمین ضخامت سد براساس مقاومت برشی… 21
3.3.2تخمین ضخامت سد بر اساس تنش کششی مصالح سد   22
4.3.2تخمین ضخامت سد بر اساس نفوذ پذیری بدنه سد  23
5.3.2تخمین پایداری سد و ستون های سنگی….. 23
 
فصل سوم: مکان یابی محل مناسب برای اجرای سد زیرزمینی
1.3 روش شناسی ………………………… 28
1.1.3مشخصات زمین…………………….. 28
2.1.3پوشش گیاهی……………………… 29
3.1.3 مشخصات اقلیمی………………….. 29
2.3 روند غربالگری……………………… 29
1.2.3شناسایی محل…………………….. 29
2.2.3انتخاب کیفی محل سد………………. 30
3.3 برداشت های ژئوفیزیکی ……………… 32
4.3 طبقه بندی محل اجرای سد ……………. 32
عنوان                                         صفحه
 
فصل چهارم: بررسی نفوذ پذیری بدنه سد زیرزمینی
1.4روش های آماری………………………. 38
1.1.4 روش Kriging………………………. 38
2.1.4 روش Variogram…………………….. 38
2.4بررسی تغییرات نفوذ پذیری بدنه سد بر عملکرد سد زیرزمینی 42
3.4 بررسی اثر تغییرات موقعیت چاه های برداشت بر تغییرات سطح آب زیرزمینی……………………………… 44
4.4 تعیین ضریب هدایت هیدرولیکی بهینه سدهای زیرزمینی به منظور
کنترل و کاهش جریان آلودگی از بدنه سد ……. 46
1.4.4رنج بهینه ضریب هدایت هیدرولیکی …… 47
2.4.4جریان آلودگی در محیط متخلخل بدنه سد. 48
3.4.4تخمین حد پایین ضریب هدایت هیدرولیکی در محیط متخلخل
بدنه سد زیرزمینی…………………….. 52
4.4.4تخمین جرم ذخیره شده در بدنه سد در حالت جریان پایدار 54
 
فصل پنجم: مدلسازی سد های زیرزمینی عمیق
1.5آ نالیز سد زیرزمینی مکه مکرمه ……….. 58
2.5بررسی منطقه مورد مطالعه ……………. 58
1.2.5 شرایط مرزی …………………… 63
2.2.5نتایج بدست آمده حاصل از آنالیز سد زیرزمینی 65
1.2.2.5تنش افقی موثر………………… 65
2.2.2.5تنش قائم موثر ………………. 69
 
فصل ششم: آنالیز سد زیرزمینی در محیط ماسه با پارامتر های مقاومتی مختلف
1.6 مدل موهر-کولمب ……………………. 76
2.6 مدل خاک سخت شونده …………………. 78

پایان نامه و مقاله

 

1.2.6 رابطه هذلولی در حالت آزمایش سه محوری زهکشی شده استاندارد ………………………….. 79
3.6 مدلسازی سد زیر زمینی در محیط ماسه با پارامترهای مختلف ……………………………….. 81
1.3.6 نرم افزار PLAXIS ……………….. 85
4.6 نتایج مدلسازی سد زیرزمینی ………….. 88
عنوان                                         صفحه
 
1.4.6 نتایج حاصل از مدلسازی دیوار دیافراگمی     89
1.1.4.6 جابجایی کل در حالت دیوار دیافراگمی    89
2.1.4.6 حداکثر ممان خمشی در حالت دیوار دیافراگمی ………………………………….. 96
3.1.4.6 نیروی برشی حداکثر در حالت دیوار دیافراگمی …………………………………. 102
4.1.4.6 جابجایی کل دیوار دیافراگمی در حالت مدول الاستیسیته ثابت
و افزایش وزن مخصوص ……………….. 108
2.4.6 نتایج حاصل از مدلسازی سپر فولادی2 .. 115
1.2.4.6جابجایی کل در حالت سپر فولادی2 … 115
2.2.4.6 ممان خمشی حداکثر در حالت سپرفولادی 2   123
3.2.4.6 نیروی برشی حداکثر در حالت سپر فولادی2 131
4.2.4.6 جابجایی کل سپر فولادی2 در حالت مدول الاستیسیته
ثابت و افزایش وزن مخصوص……………. 138
5.2.4.6 ممان خمشی حداکثر سپر فولادی2 در حالت مدول الاستیسیته
ثابت و افزایش وزن مخصوص……………. 147
6.2.4.6 نیروی برشی حداکثر سپر فولادی2 در حالت مدول الاستیسیته
ثابت و افزایش وزن مخصوص……………. 154
3.4.6 سپر فولادی 1……………………. 162
1.3.4.6جابجایی کل در حالت سپر فولادی1 … 162
2.3.4.6 ممان خمشی حداکثر در حالت سپر فولادی1   170
3.3.4.6 نیروی برشی حداکثر در حالت سپر فولادی1 177
4.3.4.6 جابجایی کل سپر فولادی1 در حالت مدول الاستیسیته ثابت
و افزایش وزن مخصوص ………………… 183
4.4.6 نتایج حاصل از مدلسازی بتن پلاستیک .. 191
1.4.4.6 جابجایی کل بتن پلاستیک……….. 191
2.4.4.6 جابجایی کل بتن پلاستیک در حالت مدول الاستیسیته ثابت
و افزایش وزن مخصوص ……………….. 199
5.6 مقایسه نتایج مدلسازی سد زیر زمینی با بهره گرفتن از مدل موهر- کولمب (M.C)
و مدل خاک سخت شونده (H.S)………………. 206
1.5.6 تنش برشی در توده خاک …………… 208
2.5.6 جابجایی کل ……………………. 211
3.5.6 فشار جانبی خاک ………………… 214
فصل هفتم: بررسی اثر برداشت آب بر سازه سد زیر زمینی
1.7 اثر برداشت آب بر دیوار دیافراگمی …… 218
1.1.7 جابجایی افقی دیوار دیافراگمی …… 219
2.1.7 جابجایی قائم دیوار دیافراگمی……. 220
3.1.7 ممان خمشی حداکثر دیوار دیافراگمی .. 222
4.1.7 نیروی برشی حداکثر دیوار دیافراگمی . 223
2.7 بررسی دیوار دیافراگمی در حالت نرمال…. 225
1.2.7 جابجایی افقی دیوار دیافراگمی …… 225
2.2.7 جابجایی قائم دیوار دیافراگمی……. 227
3.2.7 ممان خمشی حداکثر دیوار دیافراگمی… 228
4.2.7 نیروی برشی حداکثر دیوار دیافراگمی . 230
3.7 اثر برداشت آب بر سپر فولادی1………… 231
1.3.7 جابجایی افقی سپر فولادی1…………. 232
2.3.7 جابجایی قائم سپر فولادی 1………… 233
3.3.7 ممان خمشی حداکثر سپر فولادی1…….. 235
4.3.7 نیروی برشی حداکثر سپر فولادی 1 ….. 236
4.7 بررسی سپر فولادی1 در حالت نرمال …….. 238
1.4.7 جابجایی افقی سپر فولادی1…………. 238
2.4.7 جابجایی قائم سپر فولادی 1………… 240
3.4.7 ممان خمشی حداکثر سپر فولادی1…….. 241
4.4.7 نیروی برشی حداکثر سپر فولادی 1 ….. 243
5.7 اثر برداشت آب بر سپر فولادی 2 ………. 244
1.5.7 جابجایی افقی سپر فولادی2…………. 244
2.5.7 جابجایی قائم سپر فولادی 2………… 246
3.5.7 ممان خمشی حداکثر سپر فولادی2…….. 247
4.5.7 نیروی برشی حداکثر سپر فولادی 2 ….. 249
6.7 بررسی سپر فولادی 2 در حالت نرمال…….. 250
1.6.7 جابجایی افقی سپر فولادی2…………. 251
2.6.7 جابجایی قائم سپر فولادی 2………… 252
3.6.7 ممان خمشی حداکثر سپر فولادی2…….. 254
4.6.7 نیروی برشی حداکثر سپر فولادی 2 ….. 255
 
عنوان                                         صفحه
 
فصل هشتم: مطالعه موردی سد زیرزمینی علی آباد
1.8 سازندهای زمین شناسی حوضه آبریز علی آباد 260
1.1.8 فیزیوگرافی حوضه آبریز ………….. 261
1.1.1.8 طول آبراهه اصلی…………….. 262
2.8 محاسبه پارامترهای کمی برای منطقه مورد مطالعه  263
3.8 مدلسازی سد زیرزمینی علی آباد……….. 265
1.3.8 ممان خمشی …………………….. 267
2.3.8 نیروی برشی و نیروی محوری………… 268
3.3.8 جابجایی افقی بدنه سد……………. 269
4.3.8 تنش افقی موثر (Sig’x-x)…………….. 270
5.3.8 تنش برشی موثر (Sig’ x-y)…………….. 270
4.8 بررسی کفایت مقطع سد تحت اثر بارگذاری بحرانی   273
 
فصل نهم: نتیجه گیری و پیشنهادها
نتیجه گیری …………………………… 275
پیشنهادها……………………………. 277
 
فهرست منابع و مأخذ……………………… 278
 
پیوست
پیوست الف تنش برشی در توده خاک ………….. 283
پیوست ب جابجایی کل سد ………………… 288
پیوست پ فشار جانبی خاک ………………… 292
پیوست ت ممان خمشی ایجاد شده در سد ………. 297
پیوست ث نیروی برشی ایجاد شده در سد ……… 301
پیوست ج نقاط پلاستیک ایجاد شده در توده خاک مجاور سد     305
 
 
 
 
 
 
فهرست جداول
 
 
عنوان                                         صفحه
 
جدول1.2 نسبت اختلاط Cement Sand Grout ………….. 10
جدول2.2 نتایج آنالیز الک Silica Sand ………… 11
جدول3.2 ارتفاع متوسط سد………………….. 11
جدول1.3 مشخصات سدهای زیرزمینی Sunagawa و Fukuzata 31
جدول1.4 مقادیر مختلف De برای محیط های متخلخل مختلف 50
جدول1.5 خصوصیات خاک بر اساس U.S Navy, 1972 ……. 60
جدول2.5 نسبت اختلاط برای ساخت بتن پلاستیک ….. 61
جدول3.5 ظرفیت برشی در پای دیوار ………….. 62
جدول4.5 نتایج حاصل از تحلیل سد زیرزمینی مکه مقدس توسط PLAXIS 74
جدول 5.5 نتایج حاصل از تحلیل سد زیرزمینی مکه مقدس توسط STAAD………………………………………. 74
جدول1.6 پارامتر های ماسه…………………. 82
جدول2.6 مشخصات بتن پلاستیک ……………….. 84
جدول3.6 مشخصات دیوار دیافراگمی و سپر فولادی 2 . 84
جدول4.6 مشخصات سپر فولادی 1 ………………. 85
جدول5.6 تاثیر ابعاد مش…………………… 89
جدول6.6 پارامترهای خاک در حالت M.C و H.S…… 207
جدول7.6 مشخصات دیوار نرم فولادی ………….. 207
جدول1.8 خصوصیات فیزیوگرافی حوضه آبریز علی آباد 263
جدول2.8 پارامتر های لایه آبرفت در محل اجرای سد 266
جدول3.8 الف مشخصات بتن پلاستیک (t=0.3m)……… 266
جدول3.8 ب مشخصات بتن پلاستیک (t=0.4m)………… 267
جدول3.8 پ مشخصات بتن پلاستیک (t=0.6m)………… 267
 
 
 
 
فهرست شکل­ها
 
 
عنوان                                         صفحه
 
شکل 1.2 مقطع شماتیک سد زیر زمینی مدفون ……. 5
شکل 2.2 تاثیر سدهای مدفون بر جریان آب های زیرزمینی 6
شکل 3.2 استفاده از جت آب برای بالا بردن نفوذ پذیری در بالا دست سد ……………………………………….. 7
شکل 4.2 خاکریز رسی ……………………… 7
شکل 5.2 سد بتنی ………………………… 8
شکل 6.2 سد سنگی Stone Masonary Dam ……………. 8
شکل 7.2 سد بتنی مسلح ……………………. 9
شکل 8.2 صفحه پلاستیکی یا Tarred Felt …………… 9
شکل 9.2 صفحات تزریقی…………………….. 10
شکل 10.2 رابطه میان میزان رس نفوذ کننده و ضریب آبگذری در حوضه آبریز
سد زیرزمینی Sunagawa ……………………… 13
شکل 11.2 مقطع سد Sand storage ………………. 14
شکل 12.2 موقعیت مناسب برای احداث سد نیمه مدفون در تنگ شدگی تنگه ………………………………………. 14
شکل 13.2 سد نیمه مدفون در حال احداث و سد ساخته شده در فصول خشک
kitui, Kenya ……………………………….. 16
شکل 14.2 سد نیمه مدفون در طی سیلاب و بعد از آن Voi, Kenya   17
شکل 15.2 سد بتنی ……………………….. 17
شکل 16.2 سد ساخته شده از مصالح بنایی ……. 17
شکل 17.2 سد گابیونی با پوشش رسی ………….. 18
شکل 18.2 سدگابیونی با هسته رسی …………… 18
شکل 19.2 جزئیات سازه سد زیرزمینی استوانه ای. 24
شکل20.2 سد زیرزمینی چند لایه ای …………… 24
شکل 1.3 مشخصات حوضه آبگیر سد زیرزمینی Kidal, Mali 29
عنوان                                         صفحه
 
شکل 2.3 نمومه ای از عکس ماهواره ای برای انتخاب تنگه مناسب  30
شکل3.3توپوگرافی ومقطع زمین در محل اجرای سدهای زیرزمینی
SunagawaوFukuzata………………………….. 31
شکل 1.4 منطقه مورد آنالیز سد زیرزمینی Sunagawa در Miyakojima 37
شکل 2.4 توابع Semivariogram، برای سد زیرزمینی Sunagawa 39
شکل 3.4 توزیع خواص فیزیکی سد Sunagawa بر اساس مطالعات
صحرایی در منطقه miyakojima ……………….. 40
شکل 4.4 مدل تانک ……………………….. 42
شکل 5.4 تغییرات سطح آب زیرزمینی در نقاط C,B,A . 43
شکل 6.4 تاثیر تغییرات نفوذپذیری بدنه سد بر عملکرد آن    44
شکل 7.4 توزیع چاه های برداشت از مخزن سد زیرزمینی sunagawa 45
شکل 8.4 نسبت تاثیر در ناحیه مورد مطالعه   46
شکل 9.4 جریان Advective و Diffusive در راستای سد زیرزمینی   47
شکل 10.4 حالتهای A,B,C ضریب هدایت هیدرولیکی بدنه سد و بیان رابطه
جریان آلودگی و ضریب هدایت هیدرولیکی بدنه سد . 48
شکل 11.4 رابطه میان غلظت نسبی در وجه خارجی بدنه سد
و گرادیان هیدرولیکی عبوری از مقطع سد برای ضرایب هدایت هیدرولیکی
مختلف در حالت اول……………………….. 53
شکل 4 .12 رابطه میان غلظت نسبی در وجه خارجی بدنه سد
و گرادیان هیدرولیکی عبوری از مقطع سد برای ضرایب هدایت هیدرولیکی
مختلف در حالت دوم ……………………… 53
شکل 13.4 رابطه میان گرادیان هیدرولیکی و جرم ذخیره شده در بدنه سد ………………………………………. 55
شکل 14.4 رابطه میان جرم ذخیره شده در بدنه سد و گرادیان عبوری
از بدنه سد بر اساس ضرایب هدایت هیدرولیکی متفاوت بدنه سد. در این حالت
C0=1100 mg/Lit ، و ضخامت بدنه سد w=1m می باشد     56
شکل 15.4 رابطه میان جرم ذخیره شده در بدنه سد و گرادیان عبوری از بدنه
بر اساس ضرایب هدایت هیدرولیکی متفاوت بدنه سد. در این حالت
C0=1100 mg/Lit ، و ضخامت بدنه سد w=1m می باشد 56
عنوان                                         صفحه
 
شکل 1.5 موقعیت در نظر گرفته شده برای اجرای سد زیرزمینی     59
شکل 2.5 تنگه مورد نظر برای اجرای سد مکه مقدس 59
شکل 3.5 تغییرات مدول الاستیسیته نسبت به عمق .. 60
شکل 4.5 توصیف مسئله مورد بحث و نیروهای وارده 61
شکل 5 .5 تنش افقی ایجاد شده در توده خاک، برای دیوار با ارتفاع
H= 50 m و W=50,100 and 150 ……………………. 64
شکل 5 .6 تنش افقی ایجاد شده در توده خاک ناشی از فشار هیدرواستاتیک آب،
برای دیوار با ارتفاع H= 50 m و W=50,100 and 150 ….. 64
شکل 7.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 30 متر و ضخامت 60 سانتی متر………. 66
شکل 8.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 30 متر و ضخامت 80 سانتی متر………. 66
شکل 9.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 50 متر و ضخامت 80 سانتی متر……….. 67
شکل 10.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 50 متر و ضخامت 1 متر …………….. 68
شکل 11.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 70 متر و ضخامت 1 متر……………… 68
شکل 12.5 مقایسه تنش موثر افقی در PLAXIS با STAAD در حالت
ارتفاع 70 متر و ضخامت 1.2 متر ……………. 69
شکل 13.5 مقایسه تنش موثر قائم در PLAXIS با STAAD در حالت
ارتفاع 30 متر و ضخامت 60 سانتی متر………. 70
شکل 14.5 مقایسه تنش موثر قائم در PLAXIS با STAAD در حالت
ارتفاع 30 متر و ضخامت 80 سانتی متر……….. 71
شکل 15.5 مقایسه تنش موثر قائم در PLAXIS با STAAD در حالت
ارتفاع 50 متر و ضخامت 80 سانتی متر……….. 71
شکل 16.5 مقایسه تنش موثر قائم در PLAXIS با STAAD در حالت
ارتفاع 50 متر و ضخامت 1 متر……………… 72
شکل 17.5 مقایسه تنش موثر قائم در PLAXIS با STAAD در حالت
ارتفاع 70 متر و ضخامت 1 متر………………. 73
عنوان                                         صفحه
 
شکل 18.5 مقایسه تنش موثر قائم در PLAXIS با STAAD
در حالت ارتفاع 70 متر و ضخامت 1.2 متر…….. 73
شکل 1.6 سطح تسلیمYield surface در فضای تنش های اصلی برای
مدل موهر- کولمب …………………….. 77
شکل 2.6 بردارهای کرنش پلاستیک در صفحه π 78
شکل 3.6 رابطه هذلولی میان تنش و کرنش تحت آزمایش سه محوری زهکشی
شده استاندارد………………………….. 80
شکل4.6 سطح تسلیم در مدل H.S در فضای سه بعدی تنشهای اصلی  81
شکل5.6 مقایسه جابجایی کل سد در حالت با افزایش 90
شکل 6.6 مقایسه جابجایی کل سد در حالت با افزایش 91
شکل 7.6 مقایسه جابجایی کل سد در حالت با افزایش 92
شکل 8.6 مقایسه جابجایی کل سد در حالت با افزایش 93
شکل 9.6 مقایسه جابجایی کل سد در حالت با افزایش 94
شکل 10.6 مقایسه جابجایی کل سد در حالت با افزایش 95
شکل 11.6 مقایسه ممان خمشی حداکثر در حالت با افزایش 96
شکل 12.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   97
شکل 13.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   98
شکل 14.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   99
شکل 15.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   100
شکل 16.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   101
شکل 17.6 مقایسه نیروی برش حداکثر درحالت با افزایش    102
شکل 18.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 103
شکل 19.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 104
شکل 20.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 105
شکل 21.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 106
عنوان                                         صفحه
 
شکل22.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 107
شکل23.6 مقایسه جابجایی کل سد در حالت E1 با افزایش   109
شکل24.6 مقایسه جابجایی کل سد در حالت E2 و افزایش   110
شکل25.6 مقایسه جابجایی کل سد در حالت و افزایش   112
شکل26.6 مقایسه جابجایی کل سد در حالت E4 و افزایش    113
شکل27.6 مقایسه جابجایی کل سد در حالت E5 و افزایش   115
شکل28.6 مقایسه جابجایی کل سد در حالت با افزایش 116
شکل29.6 مقایسه جابجایی کل سد در حالت با افزایش 118
شکل30.6 مقایسه جابجایی کل سد در حالت با افزایش 119
شکل31.6 مقایسه جابجایی کل سد در حالت با افزایش 120
شکل32.6 مقایسه جابجایی کل سد در حالت با افزایش 121
شکل33.6 مقایسه جابجایی کل سد در حالت با افزایش 123
شکل34.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     124
شکل35.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     125
شکل36.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     126
شکل37.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     128
شکل38.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     129
شکل39.6 مقایسه ممان خمشی حداکثر سد در حالت با افزایش     130
شکل40.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   132
شکل41.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   133
شکل42.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   134
شکل43.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   135
شکل44.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   137
شکل45.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 138
عنوان                                         صفحه
 
شکل46.6 مقایسه جابجایی کل حداکثر در حالت E1 با افزایش 140
شکل47.6 مقایسه جابجایی کل حداکثر در حالت E2 با افزایش 141
شکل48.6 مقایسه جابجایی کل حداکثر در حالت E3 با افزایش 143
شکل49.6 مقایسه جابجایی کل حداکثر در حالت E4 با افزایش 145
شکل50.6 مقایسه جابجایی کل حداکثر سد در حالت E5 با افزایش    147
شکل51.6 مقایسه ممان خمشی حداکثر سد در حالت E1 با افزایش 148
شکل52.6 مقایسه ممان خمشی حداکثر سد در حالت E2 با افزایش 150
شکل53.6 مقایسه ممان خمشی حداکثر سد در حالت E3 با افزایش 151
شکل54.6 مقایسه ممان خمشی حداکثر سد در حالت E4 با افزایش 153
شکل55.6 مقایسه ممان خمشی حداکثر سد در حالت E5 با افزایش 154
شکل56.6 مقایسه نیروی برشی حداکثر سد در حالت E1 با افزایش     156
شکل57.6 مقایسه نیروی برشی حداکثر سد در حالت E2 با افزایش     157
شکل58.6 مقایسه نیروی برشی حداکثر سد در حالت E3 با افزایش     159
شکل59.6 مقایسه نیروی برشی حداکثر سد در حالت E4 با افزایش     160
شکل60.6 مقایسه نیروی برشی حداکثر سد در حالت E5 با افزایش     161
شکل61.6 مقایسه جابجایی کل در حالت با افزایش 163
شکل62.6 مقایسه جابجایی کل در حالت با افزایش 164
شکل63.6 مقایسه جابجایی کل در حالت با افزایش 165
شکل64.6 مقایسه جابجایی کل در حالت با افزایش 167
شکل65.6 مقایسه جابجایی کل در حالت با افزایش 168
شکل66.6 مقایسه جابجایی کل در حالت با افزایش    169
شکل67.6 مقایسه ممان خمشی حداکثر در حالت با افزایش    171
شکل 68.6 مقایسه ممان خمشی حداکثر در حالت با افزایش 172
شکل69.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   173
عنوان                                         صفحه
 
شکل70.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   174
شکل71.6 مقایسه ممان خمشی حداکثر در حالت با افزایش   175
شکل72.6 مقایسه ممان خمشی حداکثر در حالت با افزایش    176
شکل73.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 177
شکل74.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   178
شکل75.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   179
شکل76.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   180
شکل77.6 مقایسه نیروی برشی حداکثر در حالت با افزایش 181
شکل78.6 مقایسه نیروی برشی حداکثر در حالت با افزایش   183
شکل79.6 مقایسه جابجایی کل در حالت E1 با افزایش 185
شکل80.6 مقایسه جابجایی کل در حالت E2 با افزایش     186
شکل81.6 مقایسه جابجایی کل در حالت E3 با افزایش     188
شکل82.6 مقایسه جابجایی کل در حالت E4 با افزایش     189
شکل83.6 مقایسه جابجایی کل در حالت E5 با افزایش    191
شکل84.6 مقایسه جابجایی کل در حالت با افزایش    192
شکل85.6 مقایسه جابجایی کل در حالت با افزایش    193
شکل86.6 مقایسه جابجایی کل در حالت با افزایش 195
شکل87.6 مقایسه جابجایی کل در حالت با افزایش 196
شکل88.6 مقایسه جابجایی کل در حالت با افزایش    197
شکل89.6 مقایسه جابجایی کل در حالت با افزایش    198
شکل90.6 مقایسه جابجایی کل در حالت E1 با افزایش     200
شکل91.6 مقایسه جابجایی کل در حالت E2 با افزایش     202
شکل92.6 مقایسه جابجایی کل در حالت E3 با افزایش 203
شکل93.6 مقایسه جابجایی کل در حالت E4 با افزایش     204
عنوان                                         صفحه
 
شکل94.6 مقایسه جابجایی کل در حالت E5 با افزایش     205
شکل95.6 تنش برشی در توده خاک مقابل سد زیر زمینی در حالت دیوار
دیافراگمی و سپر فولادی1………………….. 209
شکل96.6 تنش برشی در توده خاک مقابل سد در حالت بتن پلاستیک، سپر فولادی2
و دیوار نرم فولادی………………………. 209
شکل97.6 تنش برشی در توده خاک پشت سد در حالت دیوار دیافراگمی
و سپر فولادی1………………………….. 210
شکل98.6 تنش برشی در توده خاک پشت سد در حالت بتن پلاستیک،
سپر فولادی2 و دیوارنرم فولادی……………… 211
شکل99.6 جابجایی کل سد برای جنس های مختلف….. 213
شکل100.6 فشار جانبی خاک در حالت دیوار دیافراگمی و سپر فولادی 1………………………………………. 214
شکل 101.6 فشار جانبی خاک در حالت بتن پلاستیک، سپر فولادی2
و دیوار نرم فولادی……………………… 215
شکل 1.7 مقایسه جابجایی افقی دیوار دیافراگمی با افزایش 220
شکل2.7 مقایسه جابجایی قائم دیوار دیافراگمی با افزایش   221
شکل3.7 مقایسه ممان خمشی حداکثر دیوار دیافراگمی با افزایش   223
شکل4.7 مقایسه نیروی برشی حداکثر دیوار دیافراگمی با افزایش 224
شکل5.7 مقایسه جابجایی افقی دیوار دیافراگمی در حالت نرمال با افزایش ………………………………. 226
شکل6.7 مقایسه جابجایی قائم دیوار دیافراگمی در حالت نرمال با افزایش ………………………………. 228
شکل7.7 مقایسه ممان خمشی حداکثر دیوار دیافراگمی در حالت نرمال با افزایش ………………………………. 229
شکل8.7 مقایسه نیروی برشی حداکثر دیوار دیافراگمی در حالت نرمال با افزایش ………………………………. 231
شکل9.7 مقایسه جابجایی افقی سپر فولادی 1 با افزایش   233
شکل10.7 مقایسه جابجایی قائم سپر فولادی 1 با افزایش 234
شکل11.7 مقایسه ممان خمشی سپر فولادی 1 با افزایش    236
شکل12.7 مقایسه نیروی برشی حداکثر سپر فولادی 1 با افزایش     237
شکل13.7 مقایسه جابجایی افقی سپر فولادی 1 در حالت نرمال با افزایش …………………………………….. 239
عنوان                                         صفحه
 
شکل14.7 مقایسه جابجایی قائم سپر فولادی 1 در حالت نرمال با افزایش …………………………………….. 241
شکل15.7 مقایسه ممان خمشی حداکثر سپر فولادی 1 در حالت نرمال با افزایش ………………………………. 242
شکل16.7 مقایسه نیروی برشی حداکثر سپر فولادی 1 در حالت نرمال با افزایش ………………………………. 244
شکل17.7 مقایسه جابجایی افقی سپر فولادی 2 با افزایش 245
شکل18.7 مقایسه جابجایی قائم سپر فولادی 2 با افزایش 247
شکل19.7 مقایسه ممان خمشی حداکثر سپر فولادی 2 با افزایش 248
شکل20.7 مقایسه نیروی برشی حداکثر سپر فولادی 2 با افزایش 250
شکل21.7 مقایسه جابجایی افقی سپر فولادی 2 در حالت نرمال با افزایش …………………………………….. 252
شکل22.7 مقایسه جابجایی قائم سپر فولادی 2 در حالت نرمال با افزایش …………………………………….. 253
شکل23.7 مقایسه ممان خمشی حداکثر سپر فولادی 2 در حالت نرمال با افزایش ………………………………. 255
شکل24.7 مقایسه نیروی برشی حداکثر سپر فولادی 2 در حالت نرمال با افزایش ………………………………. 256
شکل 1.8 موقعیت حوضه مورد مطالعه………….. 259
شکل 2.8 پروفیل طولی مقطع) AB تنگه گزلا ( در محل در نظر گرفته شده
برای اجرای سد…………………………. 260
شکل 3.8 نقشه زمین شناسی حوضه مورد نظر ……. 261
شکل 4.8 نقشه فیزیوگرافی حوضه آبریز علی آباد.. 262
شکل 5.8 نیمرخ طولی ابراهه اصلی حوضه علی آباد. 262
شکل 6.8 مقطع تنگه گزلا…………………… 264
شکل 7.8 مقایسه ممان خمشی بر اساس افزایش ضخامت 268
شکل 8.8 مقایسه نیروی برشی بر اساس افزایش ضخامت 268
شکل 9.8 مقایسه نیروی محوری بر اساس افزایش ضخامت   269
شکل 10.8 مقایسه جابجایی افقی بر اساس افزایش ضخامت 269
شکل 11.8 مقایسه تنش موثر افقی بر اساس افزایش ضخامت    270
شکل 12.8 مقایسه تنش برشی موثر بر اساس افزایش ضخامت    271
شکل 13.8 اثر تغییر در ضخامت بدنه سد بر ایجاد نقاط پلاستیک    272
شکل 14.8 رابطه میان مدول الاستیسیته و مقاومت فشاری تحت آزمایش تک محوره …………………………………. 273
شکل 1.الف تنش برشی در حالت دیوار دیافراگمی بر اساس مدل H.S   283
 
 
عنوان                                         صفحه
 
شکل 2 .الف تنش برشی در حالت دیوار دیافراگمی بر اساس مدل M.C 283
شکل 3.الف تنش برشی در حالت بتن پلاستیک بر اساس مدل H.S    284
شکل 4. الف تنش برشی در حالت بتن پلاستیک بر اساس مدل M.C  284
شکل 5.الف تنش برشی در حالت سپر فولادی1 بر اساس مدل H.S    285
شکل 6.الف تنش برشی در حالت سپر فولادی1 بر اساس مدل M.C   285
شکل 7.الف تنش برشی در حالت سپر فولادی2 بر اساس مدل H.S    286
شکل 8. الف تنش برشی در حالت سپر فولادی2 بر اساس مدل M.C  286
شکل 9.الف تنش برشی در حالت دیوار نرم فولادی بر اساس مدل H.S  287
شکل 10. الف تنش برشی در حالت دیوار نرم فولادی بر اساس مدل M.C 287
شکل 1. ب جابجایی کل دیوار دیافراگمی در حالت H.S 288
شکل 2.ب جابجایی کل دیوار دیافراگمی در حالت M.C 288
شکل 3.ب جابجایی کل سپر فولادی1 در حالت H.S….. 289
شکل 4.ب جابجایی کل سپر فولادی1 در حالت M.C…. 289
شکل 5.ب جابجایی کل سپر فولادی2 در حالت H.S….. 290
شکل 6.ب جابجایی کل سپر فولادی2 در حالت M.C ….. 290
شکل 7.ب جابجایی کل دیوار نرم فولادی در حالت H.S 291
شکل 8.ب جابجایی کل دیوار نرم فولادی در حالت M.C 291
شکل 1.پ فشار جانبی خاک در حالت دیوار دیافراگمی بر اساس مدل H.S………………………………………. 292
شکل 2.پ فشار جانبی خاک در حالت دیوار دیافراگمی بر اساس مدل M.C………………………………………. 292
شکل 3. پ فشار جانبی خاک در حالت بتن پلاستیک بر اساس مدل H.S   293
شکل 4. پ فشار جانبی خاک در حالت بتن پلاستیک بر اساس مدل M.C  293
شکل 5.پ فشار جانبی خاک در حالت سپر فولادی 1بر اساس مدل H.S    294
شکل 6. پ فشار جانبی خاک در حالت سپر فولادی 1بر اساس مدل M.C  294
شکل 7. پ فشار جانبی خاک در حالت سپر فولادی2 بر اساس مدل H.S   295
شکل 8.پ فشار جانبی خاک در حالت سپر فولادی2 بر اساس مدل M.C   295
شکل 9.پ فشار جانبی خاک در حالت دیوار نرم فولادی بر اساس مدل H.S………………………………………. 296
شکل 10. پ فشار جانبی خاک در حالت دیوار نرم فولادی بر اساس مدل M.C……………………………………. 296
شکل 1. ت ممان خمشی در دیوار دیافراگمی بر اساس مدل H.S    297
شکل 2.ت ممان خمشی در دیوار دیافراگمی بر اساس مدل M.C    297
شکل 3.ت ممان خمشی در سپر فولادی 1 بر اساس مدل H.S 298
عنوان                                         صفحه
 
شکل 4. ت ممان خمشی در سپر فولادی 1 بر اساس مدل M.C   298
شکل 5.ت ممان خمشی در سپر فولادی 2 بر اساس مدل H.S 299
شکل 6.ت ممان خمشی در سپر فولادی 2 بر اساس مدل M.C    299
شکل 7.ت ممان خمشی در دیوار نرم فولادی بر اساس مدل H.S 300
شکل 8.ت ممان خمشی در دیوار نرم فولادی بر اساس مدل M.C    300
شکل 1. ث نیروی برشی در دیوار دیافراگمی بر اساس مدل H.S   301
شکل 2.ث نیروی برشی در دیوار دیافراگمی بر اساس مدل M.C   301
شکل 3.ث نیروی برشی در سپر فولادی 1 بر اساس مدل H.S   302
شکل 4.ث نیروی برشی در سپر فولادی 1 بر اساس مدل M.C   302
شکل 5.ث نیروی برشی در سپر فولادی 2 بر اساس مدل H.S   303
شکل 6.ث نیروی برشی در سپر فولادی 2 بر اساس مدل M.C   303
شکل 7.ث نیروی برشی در دیوار نرم فولادی بر اساس مدل H.S    304
شکل 8.ث نیروی برشی در دیوار نرم فولادی بر اساس مدل M.C   304
شکل 1.ج نقاط پلاستیک ایجاد شده در حالت دیوار دیافراگمی بر اساس مدل M.C………………………………… 305
شکل 2.ج نقاط پلاستیک ایجاد شده در حالت بتن پلاستیک بر اساس مدل M.C………………………………………. 305
شکل 3.ج نقاط پلاستیک ایجاد شده در حالت سپر فولادی1 بر اساس مدل M.C………………………………………. 306
شکل 4.ج نقاط پلاستیک ایجاد شده در حالت سپر فولادی2 بر اساس مدل M.C………………………………………. 306
شکل 5.ج نقاط پلاستیک ایجاد شده در حالت دیوار نرم فولادی بر اساس مدل M.C………………………………… 307
 
نمودار 1 ………………………………. 83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
مقدمه
 
 
سد زیرزمینی سازه ای است که به منظور ایجاد مانع در برابر جریان طبیعی آب زیرزمینی و ایجاد یک مخزن برای آب زیرزمینی طراحی و ساخته می شود. این سدها در مناطق خشک و نیمه خشک مورد استفاده قرار می گیرند. در این مناطق، آب زیرزمینی به عنوان تنها منبع برای تامین آب جهت مصارف گوناگون در دسترس می باشند. سدهای زیرزمینی به عنوان تامین کننده نیاز آبی این مناطق مورد توجه قرار گرفته است. تامین آب توسط این گونه از سدها برای حجم های کم مورد استفاده قرار می گیرند و نمی تواند به عنوان یک روش کلی برای تامین نیاز آبی مورد استفاده قرار گیرد. با بهره گرفتن از سدهای زیرزمینی به منظور ذخیره سازی آب مشکلاتی نظیر نرخ بالای تبخیر، آلودگی آب، ورود آب شور به منابع آب شیرین که در روش های مرسوم ذخیره سازی آب وجود دارد، بوجود نمی آید. به منظور جانمایی محل مناسب برای ساخت سدهای زیرزمینی اطلاعات مربوط به شرایط هیدرولوژیکی منطقه، مطالعات ژئوتکنیکی، ژئوفیزیکی و زمین شناسی مورد نیاز می باشد. ذخیره سازی آب زیرزمینی و استفاده از این منبع آب برای مصارف گوناگون جنبه تاریخی دارد به گونه ای که در زمان رم باستان در Sardinia و شمال آفریقا استفاده از سدهای زیر زمینی مرسوم بوده است. با گذشت زمان تکنیک و دانش استفاده از این سدها نیز افزایش یافته است به طوری که در شرق و جنوب آفریقا و همچنین هند ساخت این سدها مورد توجه قرار گرفته است. دیوارهای آبند تزریقی به منظور ذخیره سازی آب در شمال آفریقا و ژاپن و محافظت منابع آب شیرین در برابر آلودگی های منابع آب شرب در اروپا و امریکا از دیگر موارد استفاده از سدهای زیرزمینی می باشد (Hanssan and Nilsson, 1986). در این پایان نامه علاوه بر توصیف سد زیرزمینی و بیان کاربردها به مدلسازی سد زیرزمینی با بهره گرفتن از نرم افزار PLAXIS در آبرفت ماسه ای بر اساس پارامترهای مختلف ماسه، جنسهای مختلف بدنه سد و مدل های مرسوم برای مدلسازی مسائل ژئوتکنیک نظیر مدل موهر کولمب و مدل خاک سخت شونده پرداخته شده است. سپس از این نتایج برای مدلسازی سد زیرزمینی در منطقه مورد مطالعه ( منطقه علی آباد استان فارس) استفاده می گردد. علاوه بر این اثر برداشت آب از آبخوان ایجاد شده، بر سازه سد مورد بررسی قرار می گیرد.
 
1.1 تاریخچه سدهای زیرزمینی
 
اطلاعات مربوط به سدهای زیرزمینی توسط Nilsson، در سال 1988 ارائه شده است. بر این اساس این گونه سدها در نقاط مختلف دنیا نظیر اروپا، آفریقا، آسیا و آمریکا مورد استفاده قرار گرفته است. در اروپا، چندین نمونه از سدهای زیرزمینی در کشورهایی همچون آلمان، فرانسه و ایتالیا به منظور بالا آوردن سطح آب های زیرزمینی مورد استفاده قرار گرفته است. در یونان به منظور تغذیه آبخوان ها و جلوگیری از ورود آب شور به منابع آب شیرین از سدهای زیرزمینی استفاده شده است (Garagunis, 1981). سدهای زیرزمینی بیشتر در کشورهای آفریقایی مورد توجه قرار گرفته است، به طوری که چندین سد زیرزمینی بزرگ در شمال آفریقا مخصوصا در الجزایر و مراکش ساخته شده است. همچنین در مناطق شرقی قاره آفریقا نیز استفاده از این نوع سدها متداول می باشد (Nilsson, 1988). در جنوب غربی ایالات متحده و همچنین در کشورهای آمریکای جنوبی مانند برزیل و مکزیک استفاده از سدهای زیرزمینی متداول می باشد. سدهای زیرزمینی که در بسترهای ماسه ای رودخانه های Arizona، ساخته شده اند، بنام Tapoons، مشهور می باشند (Lowdermilk, 1953). در آسیا استفاده از سدهای زیرزمینی خصوصا در هند متداول می باشد به طوری که در رابطه با طراحی و ساخت سدهای زیرزمینی Ahnfors، در سال 1980 مطالعاتی را انجام داده است. درجنوب هند در منطقه Kerda، دو سد زیرزمینی، یکی توسط کشاورزان و افراد بومی و دیگری توسط دولت ساخته شده است. این سد در یک دره باریک با طول کلی 160 متر از آجر، صفحه پلاستیکی و صفحات قیری ساخته شده است. حجم آب ذخیره در پشت سد در حدود 1500 متر مکعب تخمین زده شده است. در نقاطی مانند تایلند و ژاپن نیز سدهای زیرزمینی زیادی ساخته شده است. یکی دیگر از انواع سدهای زیرزمینی سدهای نیمه مدفون یا مخازن ماسه ای می باشند. در این سد دیواره سازه معمولا تا ارتفاع بالاتری از سطح زمین امتداد دارد. در این نوع سد علاوه بر ایجاد یک مخزن زیرزمینی، با ایجاد یک مخزن سطحی و رسوب گیری جریان رودخانه یا سیل نیز بر حجم مخزن زیر سطحی خود می افزاید و آن را توسعه می دهد، بنابراین برای کنترل سیل نیز مناسب می باشند. اولین نمونه از این سد در سال 1907 در Namibia، گزارش شده است (Wipplinger, 1958). Wipplinger، در سال 1958 نمونه کاملی ازساخت سد های نیمه مدفون در رودخانهHoanib ، را ارائه کرده است. جنبه های اقتصادی سدهای نیمه مدفون برای ذخیره سازی آب توسط Burger ، در سال 1970 و جنبه های طراحی این سدها توسطNissen-Petersen ، در سال 1982 ارائه شده است.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
فصل دوم
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
بررسی سدهای زیرزمینی
 
 
سد زیرزمینی سازه ای است که با مانع شدن جریان طبیعی آب های زیرزمینی و ذخیره سازی آن ها باعث ایجاد مخزن زیرزمینی می گردد. انواع سدهای زیرزمینی عبارتند از سدهای نیمه مدفون و سدهای مدفون که به توضیح هر یک می پردازیم (Hanssan and Nilsson , 1986).
 
 
1.2 سدهای زیر سطحی یا مدفون (Subsurface Dam)
 
مقطع این نوع سد مانند شکل 1.2 می باشد.

موضوعات: بدون موضوع  لینک ثابت
 [ 07:25:00 ب.ظ ]
 
مداحی های محرم